×

Alveolar septal patterning during compensatory lung growth. II: The effect of parenchymal pressure gradients. (English) Zbl 1370.92031

Summary: In most mammals, compensatory lung growth occurs after the removal of one lung (pneumonectomy). Although the mechanism of alveolar growth is unknown, the patterning of complex alveolar geometry over organ-sized length scales is a central question in regenerative lung biology. Because shear forces appear capable of signaling the differentiation of important cells involved in neoalveolarization (fibroblasts and myofibroblasts), interstitial fluid mechanics provide a potential mechanism for the patterning of alveolar growth. The movement of interstitial fluid is created by two basic mechanisms: 1) the non-uniform motion of the boundary walls, and 2) parenchymal pressure gradients external to the interstitial fluid. In a previous study [the first author et al., ibid. 400, 118–128 (2016; Zbl 1343.92109), Part I], we investigated the effects of non-uniform stretching of the primary septum (associated with its heterogeneous mechanical properties) during breathing on generating non-uniform Stokes flow in the interstitial space. In the present study, we analyzed the effect of parenchymal pressure gradients on interstitial flow. Dependent upon lung microarchitecture and physiologic conditions, parenchymal pressure gradients had a significant effect on the shear stress distribution in the interstitial space of primary septa. A dimensionless parameter \(\delta\) described the ratio between the effects of a pressure gradient and the influence of non-uniform primary septal wall motion. Assuming that secondary septa are formed where shear stresses were the largest, it is shown that the geometry of the newly generated secondary septa was governed by the value of \(\delta\). For \(\delta\) smaller than 0.26, the alveolus size was halved while for higher values its original size was unaltered. We conclude that the movement of interstitial fluid, governed by parenchymal pressure gradients and non-uniform primary septa wall motion, provides a plausible mechanism for the patterning of alveolar growth.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C30 Physiology (general)
92C35 Physiological flow

Citations:

Zbl 1343.92109
Full Text: DOI

References:

[1] Aukland, K.; Reed, R. K., Interstitial-lymphatic mechanisms in the control of extracellular fluid volume, Physiol. Rev., 73, 1, 1-78 (1993)
[2] Bachofen, H.; Gehr, P.; Weibel, E. R., Alterationsofmechanicalpropertiesand morphology in excised rabbit lungs rinsed with a detergent, J. Appl. Physiol., 47, 5, 1002-1010 (1979)
[3] Bear, J.; Corapcioglu, M. Y., Fundamentals of Trasport Phenomena in Porous Media, NATO ASI Series (1984), Martinus Nijhoff Publishers: Martinus Nijhoff Publishers Dordrecht/Boston/Lancaster
[4] Bennett, R.; Ysasi, A.; Wagner, W.; Valenzuela, C.; Tsuda, A.; Pyne, S.; Li, S.; Grimsby, J.; Pokharel, P.; Livak, K.; Ackermann, M.; Blainey, P.; Mentzer, S. J., Deformation-induced transitional myofibroblasts remodel the lung during compensatory growth, Am. J. Physiol. Lung Cell Mol. Physiol., 312, L79-L88 (2017)
[5] Bhattacharya, J.; Gropper, M. A.; Staub, N. C., Interstitial fluid pressure gradient measured by micropuncture in excised dog lung, J. Appl. Physiol., 56, 2, 271-277 (1984)
[6] Bhattacharya, J.; Gropper, M. A.; Shepard, J. M., Lung expansion and the perialveolar interstitial pressure-gradient, J. Appl. Physiol., 66, 6, 2600-2605 (1989)
[7] Blake, F. C., The resistance of packing to fluid flow, Trans. Am. Inst. Chem. Eng., 14, 415-422 (1922)
[8] Bochaton-Piallat, M. L.; Gabbiani, G.; Hinz, B., The myofibroblast in wound healing and fibrosis: answered and unanswered questions, F1000Res (2016)
[9] Breen, E. C., Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro, J. Appl. Physiol., 88, 203-209 (2000)
[10] Butler, J. P.; Loring, S. H.; Patz, S.; Tsuda, A.; Yablonskiy, D. A.; Mentzer, S. J., Evidence for adult lung growth in humans, New England J. Med., 367, 3, 244-247 (2012)
[11] Chamoto, K.; Gibney, B. C.; Lee, G. S.; Lin, M.; Simpson, D. C.; Voswinckel, R.; Konerding, M. A.; Tsuda, A.; Mentzer, S. J., CD34+ progenitor to endothelial cell transition in post-pneumonectomy angiogenesis, Am. J. Resp. Cell Mol. Biol., 46, 283-289 (2012)
[12] Chary, S. R.; Jain, R. K., Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching, Proc. Natl. Acad. Sci. USA, 86, 5385-5389 (1989)
[13] Dafni, H.; Israely, T.; Bhujwalla, Z. M.; Benjamin, L. E.; Neeman, M., Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin, Cancer Res., 62, 6731-6739 (2002)
[14] Dickie, R.; Wang, Y.; Butler, J. P.; Schulz, H.; Tsuda, A., Distribution and quantity of contractile tissue in postnatal development of at rat alveolar interstitium, Anat. Rec., 291, 83-93 (2007)
[15] Fehrenbach, H.; Voswinckel, R.; Michl, V.; Mehling, T.; Fehrenbach, A.; Seeger, W.; Nyengaard, J. R., Neoalveolarisation contributes to compensatory lung growth following pneumonectomy in mice, Eur. Respir. J., 31, 3, 515-522 (2008)
[16] Gibney, B. C.; Lee, G. S.; Houdek, J.; Lin, M.; Chamoto, K.; Konerding, M. A.; Tsuda, A.; Mentzer, S. J., Dynamic determination of oxygenation and lung compliance in murine pneumonectomy, Exp. Lung Res., 37, 301-309 (2011)
[17] Haber, S.; Weisbord, M.; Tsuda, A.; Mishima, M.; Mentzer, S. J., Interstitial fluid flow of alveolar primary septa after pneumonectomy, J. Theor. Biol., 400, 118-128 (2016) · Zbl 1343.92109
[18] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics (1983), Kluwer
[19] Jain, R. K., Transport of molecules, particles, and cells in solid tumors, Annu. Rev. Biomed. Eng., 1, 241-263 (1999)
[20] Kapanci, Y.; Ribaux, C.; Chaponnier, C.; Gabbiani, G., Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung, J. Histochem. Cytochem., 40, 1955-1963 (1992)
[21] Konerding, M. A.; Gibney, B. C.; Houdek, J.; Chamoto, K.; Ackermann, M.; Lee, G. S.; Lin, M.; Tsuda, A.; Mentzer, S. J., Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth, Angiogenesis, 15, 23-32 (2012)
[22] Lohser, J.; Slinger, P., Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung, Anesth. Analg., 121, 2, 304-318 (2015)
[23] Mead, J.; Takishim, T.; Leith, D., Stress distribution in lungs - a model of pulmonary elasticity, J. Appl. Physiol., 28, 5, 596-608 (1970)
[24] Ng, C. P.; Hinz, B.; Swartz, M. A., Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro, J. Cell. Sci., 118, Pt 20, 4731-4739 (2005)
[25] Serini, G.; Gabbiani, G., Mechanisms of myofibroblast activity and phenotypic modulation, Exp. Cell Res., 250, 273-283 (1999)
[26] Rutkowski, J. M.; Swartz, M. A., A driving force for change: interstitial flow as a morphoregulator, Trends Cell Biol., 17, 1, 44-50 (2006)
[27] Tomasek, J. J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R. A., Myofibroblasts and mechanoregulation of connective tissue remodeling, Nat Rev Mol Cell Biol, 3, 349-363 (2002)
[28] Weibel, E. R., The Pathway for Oxygen-Structure and Function in the Mam- Malian Respiratory System (1984), Harvard Univesity Press: Harvard Univesity Press Cambridge, MA
[29] Wilson, T. A.; Bachofen, H., A model for mechanical structure of the alveolar duct, J. Appl. Physiol., 52, 4, 1064-1070 (1982)
[30] Ysasi, A.; Belle, J.; Gibney, B. C.; Fedulov, A.; Wagner, W.; Tsuda, A.; Konerding, M. A.; Mentzer, S. J., Effect of unilateral diaphragmatic paralysis on post-pneumonectomy lung growth, Am. J. Physiol. Lung Cell Mol Physiol., 305, 6, L439-L445 (2013)
[31] Ysasi, A.; Wagner, W.; Bennett, R. D.; Ackermann, M.; Valenzuela, C. D.; Belle, J.; Tsuda, A.; Konerding, M. A.; Mentzer, S. J., Remodeling of alveolar septa after murine pneumonectomy, Am. J. Physiol. Lung Cell Mol Physiol., 308, 12, L1237-L1244 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.