×

A coupled complex boundary method for an inverse conductivity problem with one measurement. (English) Zbl 1370.65065

The authors consider the inverse problem for the boundary vlaue problem (BVP) \[ -\nabla(q\nabla u)= f \quad \text{in} \quad\Omega \subset \mathbb R^{d} \] with the Dirichlet and Neumann conditions, respectively, of the form \[ u= g_{2}\quad\text{on}\quad\Gamma:= \partial \Omega, \quad q\frac{\partial u}{\partial\nu}=g_{1}\quad\text{on}\quad\Gamma. \] The inverse problem consists in computing the coefficient \(q\), then the function \(f\) is given. This problem is nonlinear and ill-posed. Using the Tikhonov regularization principle and linear finite element method for the BVP \[ -\nabla(q^{+}\nabla u)= f \quad\text{in}\quad\Omega, \qquad q\frac{\partial u}{\partial\nu}=g_{1}\quad\text{on}\quad \Gamma, \int_{\Omega}udx=0, \] an iterative algorithm to determine the parameter \(q\) is constructed. Some numerical results are given to illustrate this method.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35R30 Inverse problems for PDEs
65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
Full Text: DOI

References:

[1] DOI: 10.1007/978-1-4612-3700-6 · doi:10.1007/978-1-4612-3700-6
[2] DOI: 10.1007/BF03167298 · Zbl 0855.35126 · doi:10.1007/BF03167298
[3] DOI: 10.1007/978-94-009-1740-8 · doi:10.1007/978-94-009-1740-8
[4] Isakov V, Inverse problems for partial differential equations, 2. ed. (2006) · Zbl 1092.35001
[5] DOI: 10.1080/10407790590901648 · doi:10.1080/10407790590901648
[6] DOI: 10.1002/cpa.3160370302 · Zbl 0586.35089 · doi:10.1002/cpa.3160370302
[7] DOI: 10.1002/cpa.3160380513 · Zbl 0595.35092 · doi:10.1002/cpa.3160380513
[8] DOI: 10.1137/S0036144598333613 · Zbl 0927.35130 · doi:10.1137/S0036144598333613
[9] DOI: 10.1088/0266-5611/18/6/201 · Zbl 1031.35147 · doi:10.1088/0266-5611/18/6/201
[10] DOI: 10.1007/BFb0067428 · Zbl 0208.36403 · doi:10.1007/BFb0067428
[11] DOI: 10.1007/BFb0003729 · doi:10.1007/BFb0003729
[12] Sylvester J, Math 125 pp 153– (1987)
[13] DOI: 10.1215/S0012-7094-91-06206-X · Zbl 0728.35132 · doi:10.1215/S0012-7094-91-06206-X
[14] Nachman AI, Ann. Math 142 pp 71– (1995)
[15] DOI: 10.1080/03605309708821292 · Zbl 0884.35167 · doi:10.1080/03605309708821292
[16] DOI: 10.4007/annals.2006.163.265 · Zbl 1111.35004 · doi:10.4007/annals.2006.163.265
[17] Liu L. Stability estimates for the two-dimensional inverse conductivity problem [PhD thesis]. New York (NY): University of Rochester, 1997.
[18] DOI: 10.1080/00036818808839730 · Zbl 0616.35082 · doi:10.1080/00036818808839730
[19] DOI: 10.1006/jdeq.2000.3920 · Zbl 0986.35126 · doi:10.1006/jdeq.2000.3920
[20] DOI: 10.1137/S0036141096299375 · Zbl 0888.35131 · doi:10.1137/S0036141096299375
[21] DOI: 10.1137/S0036142902415900 · Zbl 1061.35169 · doi:10.1137/S0036142902415900
[22] Friedman A, Indiana Univ. Math. J 38 pp 553– (1989)
[23] DOI: 10.1088/0266-5611/6/2/011 · Zbl 0724.35108 · doi:10.1088/0266-5611/6/2/011
[24] DOI: 10.1090/S0002-9939-1994-1195476-6 · doi:10.1090/S0002-9939-1994-1195476-6
[25] DOI: 10.1090/S0002-9947-1995-1303113-8 · doi:10.1090/S0002-9947-1995-1303113-8
[26] Alessandrini G, Rend. Istit. Mat. Univ. Trieste 28 pp 351– (1996)
[27] DOI: 10.1088/0266-5611/12/3/007 · Zbl 0857.35134 · doi:10.1088/0266-5611/12/3/007
[28] DOI: 10.1088/0266-5611/30/5/055002 · Zbl 1290.35324 · doi:10.1088/0266-5611/30/5/055002
[29] DOI: 10.1007/978-3-642-61566-5 · doi:10.1007/978-3-642-61566-5
[30] DOI: 10.1093/imanum/drn066 · Zbl 1203.65232 · doi:10.1093/imanum/drn066
[31] DOI: 10.1137/S0363012997318602 · Zbl 0940.65117 · doi:10.1137/S0363012997318602
[32] DOI: 10.1093/imanum/5.2.153 · Zbl 0582.65044 · doi:10.1093/imanum/5.2.153
[33] DOI: 10.1080/01630569308816529 · Zbl 0810.47058 · doi:10.1080/01630569308816529
[34] DOI: 10.1088/0266-5611/16/6/319 · Zbl 0968.35124 · doi:10.1088/0266-5611/16/6/319
[35] DOI: 10.1137/S1052623498344562 · Zbl 1035.90105 · doi:10.1137/S1052623498344562
[36] Kang H, J. Appl. Math 59 pp 1533– (1999)
[37] Kang H, Numerical identification of discontinuous conductivity coefficients Inverse Probl 13 pp 113– (1997) · Zbl 0934.35204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.