×

On the relation between two approaches to necessary optimality conditions in problems with state constraints. (English) Zbl 1370.49011

Summary: We consider a class of optimal control problems with a state constraint and investigate a trajectory with a single boundary interval (subarc). Following R.V. Gamkrelidze, we differentiate the state constraint along the boundary subarc, thus reducing the original problem to a problem with mixed control-state constraints, and show that this way allows one to obtain the full system of stationarity conditions in the form of A.Ya. Dubovitskii and A.A. Milyutin, including the sign definiteness of the measure (state constraint multiplier), i.e., the nonnegativity of its density and atoms at junction points. The stationarity conditions are obtained by a two-stage variation approach, proposed in this paper. At the first stage, we consider only those variations, which do not affect the boundary interval, and obtain optimality conditions in the form of Gamkrelidze. At the second stage, the variations are concentrated on the boundary interval, thus making possible to specify the stationarity conditions and obtain the sign of density and atoms of the measure.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
28A25 Integration with respect to measures and other set functions

References:

[1] Dubovitskii, A.Y., Milyutin, A.A.: Extremum problems in the presence of restrictions. USSR Comput. Math. Math. Phys 5(3), 1-80 (1965) · Zbl 0158.33504 · doi:10.1016/0041-5553(65)90148-5
[2] Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972) · Zbl 0234.49016 · doi:10.1007/978-3-642-80684-1
[3] Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1974)
[4] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishechenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962) · Zbl 0102.32001
[5] Hartl, F.H., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181-218 (1995) · Zbl 0832.49013 · doi:10.1137/1037043
[6] Arutyunov, A.V., Karamzin, D.Y., Pereira, F.L.: The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited. J. Optim. Theory Appl. 149(3), 474-493 (2011) · Zbl 1221.49026 · doi:10.1007/s10957-011-9807-5
[7] Dmitruk, A.V., Osmolovskii, N.P.: Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete Contin. Dyn. Syst. 35(9), 4323-4343 (2015) · Zbl 1334.49071 · doi:10.3934/dcds.2015.35.4323
[8] Dmitruk, A.V., Kaganovich, A.M.: The hybrid maximum principle is a consequence of Pontryagin maximum principle. Syst. Control Lett. 57(11), 964-970 (2008) · Zbl 1151.49017
[9] Denbow, C.H.: A Generalized Form of the Problem of Bolza. Contributions to the Calculus of Variations, 1933-1937, pp. 449-484. The University of Chicago Press, Chicago (1937) · JFM 63.0484.05
[10] Volin, Y.M., Ostrovskii, G.M.: Maximum principle for discontinuous systems and its application to problems with state constraints (In Russian). Izvestia Vuzov. Radiofzika 12, 1609-1621 (1969)
[11] Augustin, D., Maurer, H.: Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems. Control Cybern. 29(1), 11-31 (2000) · Zbl 1006.49018
[12] Maurer, H., Buskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second order sufficient conditions for bang-bang controls. Optim. Control Appl. Methods 26, 129-156 (2005) · doi:10.1002/oca.756
[13] Oberle, H.J., Rosendahl, R.: On singular arcs in nonsmooth optimal control. Control Cybern. 37(2), 429-450 (2008) · Zbl 1235.49050
[14] Dmitruk, A.V., Kaganovich, A.M.: Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22(2), 180-215 (2011) · Zbl 1256.49025 · doi:10.1007/s10598-011-9096-8
[15] Liu, Y., Teo, K.L., Jennings, L.S., Wang, S.: On a class of optimal control problems with state jumps. J. Optim. Theory Appl. 98(1), 65-82 (1998) · Zbl 0908.49023 · doi:10.1023/A:1022684730236
[16] Milyutin, A.A., Osmolovskii, N.P.: Calculus of variations and optimal control. American Mathematical Society, Providence (1998) · Zbl 1331.49007
[17] Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P.: Maximum principle in optimal control (Princip maksimuma v optimal’nom upravlenii, in Russian). Lomonosov Moscow State University, Faculty of Mathematics and Mechanics, Moscow (2004)
[18] Dmitruk, A.V., Osmolovskii, N.P.: Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints. SIAM J. Control Optim. 52(6), 3437-3462 (2014) · Zbl 1311.49057 · doi:10.1137/130921465
[19] Afanasyev, A.P., Dikusar, V.V., Milyutin, A.A., Chukanov, S.V.: Necessary Condition in Optimal Control (Neobchodimoye uslociye v optimal’nom upravlenii, in Russian). Nauka, Moscow (1990) · Zbl 0724.49014
[20] Maurer, H.: On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15(3), 345-362 (1977) · Zbl 0358.49008 · doi:10.1137/0315023
[21] Bonnans, J.F., de la Vega, C.: Optimal control of state constrained integral equations. Set-Valued Anal. 18, 307-326 (2010) · Zbl 1221.49039 · doi:10.1007/s11228-010-0154-8
[22] de Pinho, M.R., Shvartsman, I.: Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete Contin. Dyn. Syst. Ser. A 29(2), 505-522 (2011) · Zbl 1209.49025 · doi:10.3934/dcds.2011.29.505
[23] Arutyunov, A.V., Karamzin, D.Y., Pereira, F.: Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints. Proc. Steklov Inst. Math. 292(1), 27-35 (2016) · Zbl 1343.49034 · doi:10.1134/S0081543816020036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.