×

Block designs signed over groups of order \(2^n 3^m\). (English) Zbl 1370.05021

Summary: We introduce a new piecewise construction technique for generalised Bhaskar Rao designs and the concepts of generalised Bhaskar Rao block design pieces and holey generalised Bhaskar Rao block designs. We prove composition theorems for these designs. Using this construction technique and the theory of group representations, and the representations of 2-groups over the field with 3 elements, we show that the established necessary conditions for the existence of generalised Bhaskar Rao designs of block size 3 are sufficient for all groups of order \(2^n 3^m\).

MSC:

05B05 Combinatorial aspects of block designs
05B30 Other designs, configurations

Software:

GAP
Full Text: DOI

References:

[1] Abel, R. J.R.; Bennett, F. E.; Greig, M., PBD-closure, (Colbourn, C. J.; Dinitz, J. H., The CRC Handbook of Combinatorial Designs (2007), CRC Press: CRC Press Boca Raton, FL), 247-254
[2] Abel, R. J.R.; Chan, N. H.N.; Combe, D.; Palmer, W. D., Existence of GBRDs with block size 4 and BRDs with block size 5, Des. Codes Cryptogr., 61, 285-300 (2011) · Zbl 1229.05045
[3] Abel, R. J.R.; Combe, D.; Nelson, A. M.; Palmer, W. D., GBRDs over groups of order \(\leq 100\) or of order \(p q\) with \(p, q\) primes, Discrete Math., 310, 1080-1088 (2010) · Zbl 1231.05048
[4] Abel, R. J.R.; Combe, D.; Nelson, A. M.; Palmer, W. D., GBRDs with block size three over 2-groups, semi-dihedral groups and nilpotent groups, Electron. J. Combin., 18(1), #P32 (2011) · Zbl 1233.05042
[5] Abel, R. J.R.; Combe, D.; Nelson, A. M.; Palmer, W. D., GBRDs with block size 3 over odd order groups, and groups of orders divisible by 2 but not 4, Australas. J. Combin, 52, 123-132 (2012) · Zbl 1248.05015
[6] Abel, R. J.R.; Combe, D.; Nelson, A. M.; Palmer, W. D., GBRDs over supersolvable groups, and solvable groups of orders prime to 3, Des. Codes Cryptogr., 69, 189-201 (2013) · Zbl 1269.05013
[7] Abel, R. J.R.; Combe, D.; Palmer, W. D., Bhaskar Rao designs and the dihedral groups, J. Combin. Theory Ser. A, 106, 145-157 (2004) · Zbl 1042.05010
[8] Abel, R. J.R.; Combe, D.; Price, G.; Palmer, W. D., Existence of generalised Bhaskar Rao designs with block size 3, Discrete Math., 309, 4069-4078 (2009) · Zbl 1285.05016
[9] Bhaskar Rao, M., Group divisible family of PBIB designs, J. Indian Assoc., 4, 14-28 (1966)
[10] Bhaskar Rao, M., Balanced orthogonal designs and their applications in the construction of some BIB and group divisible designs, Sankhyā Ser. A, 32, 439-448 (1970) · Zbl 0223.62096
[11] Chaudhry, G. R.; Greig, M.; Seberry, J., On the \((v, 5, \lambda)\)-family of Bhaskar Rao designs, J. Statist. Plann. Inference, 106, 303-327 (2002) · Zbl 0997.05020
[12] The CRC Handbook of Combinatorial Designs, (Colbourn, C. J.; Dinitz, J. H. (2007), CRC Press), New Results can be found at http://www.emba.uvm.edu/ jdinitz/newresults.html · Zbl 1101.05001
[13] Combe, D.; Palmer, W. D.; Unger, W. R., Bhaskar Rao designs and the alternating group \(A_4\), Australas. J. Combin., 24, 275-283 (2001) · Zbl 0979.05011
[14] de Launey, W.; Sarvate, D. G.; Seberry, J., Generalized Bhaskar Rao designs of block size \(3\) over \(Z_4\), Ars Combin., 19A, 273-285 (1985) · Zbl 0565.05013
[15] de Launey, W.; Seberry, J., Generalized Bhaskar Rao designs of block size four, Congr. Numer., 41, 229-294 (1984) · Zbl 0544.05012
[16] Evans, A. B., Orthomorphism Graphs of Groups (1992), Springer-Verlag · Zbl 0796.05001
[17] Evans, A. B., The admissibility of sporadic simple groups, J. Algebra, 321, 105-116 (2009) · Zbl 1166.20012
[18] Ge, G.; Greig, M.; Seberry, J., Generalized Bhaskar Rao designs with block size \(4\) signed over elementary abelian groups, J. Combin. Math. Combin. Comput., 46, 3-45 (2003) · Zbl 1037.05007
[19] Ge, G.; Greig, M.; Seberry, J.; Seberry, R., Generalized Bhaskar Rao designs with block size \(3\) over finite abelian groups, Graphs Combin., 23, 3, 271-290 (2007) · Zbl 1122.05011
[20] Ge, G.; Lam, C. W.H., Bhaskar Rao designs with block size four, Discrete Math., 268, 293-298 (2003) · Zbl 1018.05009
[21] Hall, M.; Paige, L. J., Complete mappings of finite groups, Pacific J. Math., 5, 541-549 (1955) · Zbl 0066.27703
[22] Hall Jr., M., The Theory of Groups (1959), Macmillan Co. · Zbl 0084.02202
[23] Isaacs, I. M., Character theory of finite groups (1976), Academic Press · Zbl 0337.20005
[24] Lam, C. W.H.; Seberry, J., Generalized Bhaskar Rao designs, J. Statist. Plann. Inference, 10, 83-95 (1984) · Zbl 0552.05012
[25] Palmer, W. D., Generalized Bhaskar Rao designs with two association classes, Australas. J. Combin., 1, 161-180 (1990) · Zbl 0756.05018
[26] Palmer, W. D., A composition theorem for generalized Bhaskar Rao designs, Australas. J. Combin., 6, 221-228 (1992) · Zbl 0776.05010
[27] Palmer, W. D., Partial generalized Bhaskar Rao designs over abelian groups, Australas. J. Combin., 6, 257-266 (1992) · Zbl 0776.05011
[28] Palmer, W. D., Partial Generalized Bhaskar Rao Designs (1993), University of Sydney, (Ph.D. thesis)
[29] Palmer, W. D.; Seberry, J., Bhaskar Rao designs over small groups, Ars Combin., 26A, 125-148 (1988) · Zbl 0677.05012
[30] Seberry, J., Generalized Bhaskar Rao designs of block size \(3\), J. Statist. Plann. Inference, 11, 373-379 (1985) · Zbl 0572.05021
[32] Wang, J.; Yin, J., Two-dimensional optical orthogonal codes and semicyclic group divisible designs, IEEE Trans. Inform. Theory, 56, 5, 2177-2187 (2010) · Zbl 1366.94673
[33] Wang, K.; Wang, J., Semicyclic \(4\)-GDDs and related two-dimensional optical orthogonal codes, Des. Codes Cryptogr., 63, 305-319 (2012) · Zbl 1238.05031
[34] Wilcox, S., Reduction of the Hall-Paige conjecture to sporadic simple groups, J. Algebra, 321, 1407-1428 (2009) · Zbl 1172.20024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.