×

Holographic \(p\)-wave superfluid in Gauss-Bonnet gravity. (English) Zbl 1369.83077

Summary: We construct the holographic \(p\)-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the cave of winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss-Bonnet parameter and agree well with the Ginzburg-Landau prediction.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
82D50 Statistical mechanics of superfluids

References:

[1] Maldacena, J., Adv. Theor. Math. Phys.. Adv. Theor. Math. Phys., Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[3] Witten, E., Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[4] Gubser, S. S., Phys. Rev. D, 78, Article 065034 pp. (2008)
[5] Hartnoll, S. A., Class. Quantum Gravity, 26, 224002 (2009) · Zbl 1181.83003
[6] Herzog, C. P., J. Phys. A, 42, 343001 (2009) · Zbl 1180.82218
[7] Horowitz, G. T., Lect. Notes Phys., 828, 313 (2011)
[8] Cai, R. G.; Li, L.; Li, L. F.; Yang, R. Q., Sci. China, Phys. Mech. Astron., 58, Article 060401 pp. (2015)
[9] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Phys. Rev. Lett., 101, Article 031601 pp. (2008) · Zbl 1404.82086
[10] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., J. High Energy Phys., 0812, Article 015 pp. (2008)
[11] Gubser, S. S.; Pufu, S. S., J. High Energy Phys., 0811, Article 033 pp. (2008)
[12] Cai, R. G.; He, S.; Li, L.; Li, L. F., J. High Energy Phys., 1312, Article 036 pp. (2013)
[13] Cai, R. G.; Li, L.; Li, L. F., J. High Energy Phys., 1401, Article 032 pp. (2014)
[14] Chen, J. W.; Kao, Y. J.; Maity, D.; Wen, W. Y.; Yeh, C. P., Phys. Rev. D, 81, Article 106008 pp. (2010)
[15] Benini, F.; Herzog, C. P.; Rahman, R.; Yarom, A., J. High Energy Phys., 1011, Article 137 pp. (2010)
[16] Basu, P.; Mukherjee, A.; Shieh, H. H., Phys. Rev. D, 79, Article 045010 pp. (2009)
[17] Herzog, C. P.; Kovtun, P. K.; Son, D. T., Phys. Rev. D, 79, Article 066002 pp. (2009)
[18] Arean, D.; Basu, P.; Krishnan, C., J. High Energy Phys., 1010, Article 006 pp. (2010)
[19] Wu, Y. B.; Lu, J. W.; Zhang, W. X.; Zhang, C. Y.; Lu, J. B.; Yu, F., Phys. Rev. D, 90, Article 126006 pp. (2014)
[20] Wu, Y. B.; Lu, J. W.; Zhang, C. Y.; Zhang, N.; Zhang, X.; Yang, Z. Q.; Wu, S. Y., Phys. Lett. B, 741, 138 (2015) · Zbl 1373.82102
[21] Arean, D.; Bertolini, M.; Evslin, J.; Prochazka, T., J. High Energy Phys., 1007, Article 060 pp. (2010)
[22] Sonner, J.; Withers, B., Phys. Rev. D, 82, Article 026001 pp. (2010)
[23] Zeng, H. B.; Sun, W. M.; Zong, H. S., Phys. Rev. D, 83, Article 046010 pp. (2011)
[24] Peng, Y.; Kuang, X. M.; Liu, Y. Q.; Wang, B.
[25] Kuang, X. M.; Liu, Y. Q.; Wang, B., Phys. Rev. D, 86, Article 046008 pp. (2012)
[26] Amado, I.; Arean, D.; Jimenez-Alba, A.; Landsteiner, K.; Melgar, L.; Landea, I. S., J. High Energy Phys., 1307, Article 108 pp. (2013)
[27] Zeng, H. B., Phys. Rev. D, 87, Article 046009 pp. (2013)
[28] Amado, I.; Arean, D.; Jimenez-Alba, A.; Landsteiner, K.; Melgar, L.; Landea, I. S., J. High Energy Phys., 1402, Article 063 pp. (2014)
[29] Lai, C. Y.; Pan, Q. Y.; Jing, J. L.; Wang, Y. J., Phys. Lett. B, 757, 65 (2016) · Zbl 1360.82096
[30] Arias, R.; Landea, I. S.
[31] Cai, R. G., Phys. Rev. D, 65, Article 084014 pp. (2002)
[32] Gregory, R.; Kanno, S.; Soda, J., J. High Energy Phys., 0910, Article 010 pp. (2009)
[33] Pan, Q. Y.; Wang, B.; Papantonopoulos, E.; Oliveria, J.; Pavan, A. B., Phys. Rev. D, 81, Article 106007 pp. (2010)
[34] Pan, Q. Y.; Wang, B., Phys. Lett. B, 693, 159 (2010)
[35] Jing, J. L.; Wang, L. C.; Pan, Q. Y.; Chen, S. B., Phys. Rev. D, 83, Article 066010 pp. (2011)
[36] Ge, X. H.; Wang, B.; Wu, S. F.; Yang, G. H., J. High Energy Phys., 1008, Article 108 pp. (2010)
[37] Brihaye, Y.; Hartmann, B., Phys. Rev. D, 81, Article 126008 pp. (2010)
[38] Cai, R. G.; Nie, Z. Y.; Zhang, H. Q., Phys. Rev. D, 82, Article 066007 pp. (2010)
[39] Barclay, L.; Gregory, R.; Kanno, S.; Sutcliffe, P., J. High Energy Phys., 1012, Article 029 pp. (2010)
[40] Gregory, R., J. Phys. Conf. Ser., 283, Article 012016 pp. (2011)
[41] Li, H. F.; Cai, R. G.; Zhang, H. Q., J. High Energy Phys., 1104, Article 028 pp. (2011)
[42] Kanno, S., Class. Quantum Gravity, 28, 127001 (2011) · Zbl 1222.82076
[43] Gangopadhyay, S.; Roychowdhury, D., J. High Energy Phys., 1208, 104 (2012)
[44] Yao, W. P.; Jing, J. L., J. High Energy Phys., 1305, Article 101 pp. (2013)
[45] Nie, Z. Y.; Zeng, H., J. High Energy Phys., 1510, Article 047 pp. (2015)
[46] Ghorai, D.; Gangopadhyay, S., Eur. Phys. J. C, 76, 146 (2016)
[47] Sheykhi, A.; Salahi, H. R.; Montakhab, A., J. High Energy Phys., 1604, Article 058 pp. (2016)
[48] Salahi, H. R.; Sheykhi, A.; Montakhab, A., Eur. Phys. J. C, 76, 575 (2016)
[49] Lu, J. W.; Wu, Y. B.; Cai, T.; Liu, H. M.; Ren, Y. S.; Liu, M. L., Nucl. Phys. B, 903, 360 (2016) · Zbl 1332.83089
[50] Brigante, M.; Liu, H.; Myers, R. C.; Shenker, S.; Yaida, S., Phys. Rev. Lett., 100, Article 191601 pp. (2008)
[51] Buchel, A.; Myers, R. C., J. High Energy Phys., 0908, Article 016 pp. (2009)
[52] Tinkham, M., Introduction to Superconductivity (1996), McGrawHill: McGrawHill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.