×

An uncertainty relation for the orbital angular momentum operator. (English) Zbl 1369.81053

Summary: A common reducible representation space of the Lie algebras \(\operatorname{su}(1,1)\) and \(\operatorname{su}(2)\) is equipped with two different types of scalar products. The representation bases are labeled by the azimuthal and magnetic quantum numbers. The generators of \(\operatorname{su}(2)\) are the \(x\)-, \(y\)- and \(z\)-components of the orbital angular momentum operator. The representation of each of these Lie algebras is unitary with respect to only one of the scalar products. To each positive magnetic quantum number a family of the \(\operatorname{su}(1,1)\)-Barut-Girardello coherent states is associated. The normalization and resolution of the identity condition for the coherent states are realized in two different approaches, i.e. the unitary and the non-unitary approaches. For the coherent states of the non-unitary case we calculate the uncertainty relation for the Hermitian \(x\)- and \(y\)-components of the angular momentum operator. While the unitary case leads to the known uncertainty relation for the Hermitian \(x\)- and \(y\)-components of \(\operatorname{su}(1,1)\) Lie algebra.

MSC:

81S05 Commutation relations and statistics as related to quantum mechanics (general)
81R30 Coherent states
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
17B81 Applications of Lie (super)algebras to physics, etc.
62J10 Analysis of variance and covariance (ANOVA)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI

References:

[1] Roy, C.L., Sannigrahi, A.B.: Uncertainty relation between angular momentum and angle variable. Am. J. Phys. 47, 965 (1979) · doi:10.1119/1.11598
[2] Pereira, T., Marchetti, D.H.U.: Quantum states allowing minimum uncertainty product of \[\phi\] ϕ and \[L_z\] Lz. Progr. Theor. Phys. 122, 1137 (2009) · Zbl 1185.81097 · doi:10.1143/PTP.122.1137
[3] Franke-Arnold, S., Barnett, S.M., Yao, E., Leach, J., Courtial, J., Padgett, M.: Uncertainty principle for angular position and angular momentum. New J. Phys. 6, 103 (2004) · doi:10.1088/1367-2630/6/1/103
[4] Pegg, D.T., Barnett, S.M., Zambrini, R., Franke-Arnold, S., Padgett, M.: Minimum uncertainty states of angular momentum and angular position. New J. Phys. 7, 000 (2005) · doi:10.1088/1367-2630/7/1/062
[5] Goette, J.B., Zambrini, R., Franke-Arnold, S., Barnett, S.M.: Large-uncertainty intelligent states for angular momentum and angle. J. Opt. B. 7, S563 (2005) · doi:10.1088/1464-4266/7/12/019
[6] Dammeier, L., Schwonnek, R., Werner, R.F.: Uncertainty relations for angular momentum. New J. Phys. 17, 093046 (2015) · Zbl 1448.81035 · doi:10.1088/1367-2630/17/9/093046
[7] Townsend, J.S.: A Modern Approach to Quantum Mechanics. University Science Books, Sausalito (2000)
[8] Barut, A.O., Girardello, L.: New coherent states associated with non-compact groups. Commun. Math. Phys. 21, 41 (1971) · Zbl 0214.38203 · doi:10.1007/BF01646483
[9] Gerry, C.C.: Application of \[SU(1,1)\] SU(1,1) coherent states to the interaction of squeezed light in an anharmonic oscillator. Phys. Rev. A 35, 2146 (1987) · doi:10.1103/PhysRevA.35.2146
[10] Ban, M.: Superpositions of the \[SU(1,1)\] SU(1,1) coherent states. Phys. Lett. A 193, 121 (1994) · Zbl 0959.81547 · doi:10.1016/0375-9601(94)90946-6
[11] Brif, C., Vourdas, A., Mann, A.: Analytic representations based on \[SU(1,1)\] SU(1,1) coherent states and their applications. J. Phys. A 29, 5873 (1996) · Zbl 0902.22016 · doi:10.1088/0305-4470/29/18/017
[12] Wang, X.-G., Sanders, B.C., Pan, S.-H.: Entangled \[SU(2)\] SU(2) and \[SU(1,1)\] SU(1,1) coherent states. J. Phys. A 33, 7451 (2000) · Zbl 0962.81026 · doi:10.1088/0305-4470/33/41/312
[13] Gerry, C.C., Benmoussa, A.: Two-mode coherent states for \[SU(1,1)\otimes SU(1,1)\] SU(1,1)⊗SU(1,1). Phys. Rev. A 62, 033812 (2000) · doi:10.1103/PhysRevA.62.033812
[14] Fujii, K.: Introduction to coherent states and quantum information theory. arXiv:quant-ph/0112090, prepared for 10th Numazu Meeting on Integral System, Noncommutative Geometry and Quantum Theory, Numazu, Shizuoka, Japan, 7-9 Mai 2002
[15] Fakhri, \[H.: su(1,1)\] su(1,1)-Barut-Girardello coherent states for Landau levels. J. Phys. A 37, 5203 (2004) · Zbl 1054.81023 · doi:10.1088/0305-4470/37/19/007
[16] Dong, S.-H., Lozada-Cassou, M.: Exact solutions, ladder operators and Barut-Girardello coherent states for a harmonic oscillator plus an inverse square potential. Int. J. Mod. Phys. B 19, 4219 (2005) · Zbl 1079.81070 · doi:10.1142/S0217979205032735
[17] Cirilo-Lombardo, D.J.: Non-compact groups, coherent states, relativistic wave equations and the harmonic oscillator. Found. Phys. 37, 919 (2007) · Zbl 1125.81030 · doi:10.1007/s10701-007-9133-9
[18] Dong, S.-H.: Factorization Method in Quantum Mechanics. Springer, The Netherlands (2007) · Zbl 1130.81001
[19] Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley-VCH, Weinheim (2009) · doi:10.1002/9783527628285
[20] Fakhri, H., Mojaveri, B.: Landau levels as a limiting case of a model with the Morse-like magnetic field. Rep. Math. Phys. 66, 299 (2010) · Zbl 1236.81126 · doi:10.1016/S0034-4877(11)00002-4
[21] Popov, D., Pop, N., Chiritoiu, V., Luminosu, I., Costache, M.: Generalized Barut-Girardello coherent states for mixed states with arbitrary distribution. Int. J. Theor. Phys. 49, 661 (2010) · Zbl 1190.81069 · doi:10.1007/s10773-010-0246-0
[22] Popov, D., Dong, S.-H., Pop, N., Sajfert, V., Simon, S.: Construction of the Barut-Girardello quasi coherent states for the Morse potential. Ann. Phys. 339, 122 (2013) · Zbl 1343.81135 · doi:10.1016/j.aop.2013.08.018
[23] Aremua, I., Hounkonnou, M.N., Baloitcha, E.: Coherent states for Landau levels: algebraic and thermodynamical properties. arXiv:1301.6280 · Zbl 1334.81051
[24] Biedenharn Jr, L.C., Holman III, W.J.: Complex angular momenta and the groups \[SU(1,1)\] SU(1,1) and \[SU(2)\] SU(2). Ann. Phys. 39, 1 (1966) · Zbl 0144.23804 · doi:10.1016/0003-4916(66)90135-7
[25] Gilmore, R.: Lie Groups, Physics and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge University Press, Cambridge (2008) · Zbl 1157.00009 · doi:10.1017/CBO9780511791390
[26] Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957) · Zbl 0079.20102
[27] Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, New Jersey (1957) · Zbl 0079.42204
[28] Wang, Z.X., Guo, D.R.: Special Functions. World Scientific, Singapore (1989) · Zbl 0724.33001 · doi:10.1142/0653
[29] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, San Diego (2000) · Zbl 0981.65001
[30] Fakhri, H.: A Weil representation of \[sp(4)\] sp(4) realized by differentail operators in the space of smooth functions on \[S^2\times S^1\] S2×S1. J. Nonlinear Math. Phys. 17, 137 (2010) · Zbl 1196.17008 · doi:10.1142/S1402925110000660
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.