×

Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation. (English) Zbl 1369.35107

Summary: Discrete-time orthogonal spline collocation (OSC) methods are presented for the two-dimensional fractional cable equation, which governs the dynamics of membrane potential in thin and long cylinders such as axons or dendrites in neurons. The proposed scheme is based on the OSC method for space discretization and finite difference method for time, which is proved to be unconditionally stable and convergent with the order \(O(\tau^{\min(2-\gamma_1,2-\gamma_2)}+h^{r+1})\) in \(L^2\)-norm, where \(\tau,h\) and \(r\) are the time step size, space step size and polynomial degree, respectively, and \(\gamma_1\) and \(\gamma_2\) are two different exponents of fractional derivatives with \(0<\gamma_1,\gamma_2<1\). Numerical experiments are presented to demonstrate the results of theoretical analysis and show the accuracy and effectiveness of the method described herein, and super-convergence phenomena at the partition nodes is also exhibited, which is a characteristic of the OSC methods, namely, the rates of convergence in the maximum norm at the partition nodes in \(u_x\) and \(u_y\) are approximately \(h^{r+1}\) in our numerical experiment.

MSC:

35R11 Fractional partial differential equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65D07 Numerical computation using splines

Software:

FODE
Full Text: DOI

References:

[1] Caputo, M., Linear models of dissipation whose \(Q\) is almost frequency independent-II, Geophys. J. Int., 13, 5, 529-539 (1967)
[2] Podlubny, I., Fractional differential equations. an introduction to fractional derivatives, (Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications (1999), Academic Press: Academic Press New York) · Zbl 0924.34008
[3] Weilbeer, M., Efficient numerical methods for fractional differential equations and their analytical background (2005), Technische Universität Braunschweig, (Ph.D. thesis) · Zbl 1104.26012
[4] Xu, D., On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel I: smooth initial data, Appl. Math. Comput., 58, 1-27 (1993) · Zbl 0782.65160
[5] Xu, D., On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel II: nonsmooth initial data, Appl. Math. Comput., 58, 29-60 (1993) · Zbl 0782.65161
[6] Xu, D., Finite element methods for the nonlinear integro-differential equations, Appl. Math. Comput., 58, 241-273 (1993) · Zbl 0786.65127
[7] Xu, D., The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability, Sci. China Math., 56, 2, 395-424 (2013) · Zbl 1266.65212
[8] Jiang, Y. J.; Ma, J. T., High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235, 11, 3285-3290 (2011) · Zbl 1216.65130
[9] Deng, W. H., Finite element method for the space and time fractional Fokker-Planck equations, SIAM J. Numer. Anal., 47, 1, 204-226 (2008) · Zbl 1416.65344
[10] Tang, T., A finite difference scheme for a partial integro-differential equation with a weakly singular kernel, Appl. Numer. Math., 11, 4, 309-319 (1993) · Zbl 0768.65093
[11] Zhang, Y. N.; Sun, Z. Z., Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230, 24, 8713-8728 (2011) · Zbl 1242.65174
[12] Ren, J.; Sun, Z. Z., Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions, J. Sci. Comput., 56, 2, 381-408 (2013) · Zbl 1281.65113
[13] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379
[14] Cui, M. R., Compact alternating direction implicit method for the two-dimensional time fractional diffusion equation, J. Comput. Phys., 231, 6, 2621-2633 (2012) · Zbl 1242.65158
[15] McLean, W.; Mustapha, K., Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer. Algorithms, 52, 1, 69-88 (1999) · Zbl 1177.65194
[16] McLean, W.; Mustapha, K., A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105, 3, 481-510 (2007) · Zbl 1111.65113
[17] Mustapha, K., Numerical solution for a sub-diffusion equation with a smooth kernel, J. Comput. Appl. Math., 231, 2, 735-744 (2009) · Zbl 1171.65102
[18] Mustapha, K., An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements, IMA J. Numer. Anal., drp057 (2010)
[19] Mustapha, K.; AlMutawa, J., A finite difference method for an anomalous sub-diffusion equation, theory and applications, Numer. Algorithms, 61, 4, 525-543 (2012) · Zbl 1263.65082
[20] Mustapha, K.; McLean, W., Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51, 1, 491-515 (2013) · Zbl 1267.26005
[21] Chen, Y.; Li, X.; Tang, T., A note on Jacobi spectral-collocation methods for weakly singular volterra integral equations with smooth solutions, J. Comput. Math., 31, 1, 47-56 (2013) · Zbl 1289.65284
[22] Chen, Y.; Tang, T., Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp., 79, 269, 147-167 (2010) · Zbl 1207.65157
[23] Li, C. P.; Zeng, F. H.; Liu, F., Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15, 3, 383-406 (2012) · Zbl 1276.26016
[24] Henry, B. I.; Langlands, T. A.M.; Wearne, S. L., Fractional cable models for spiny neuronal dentrites, Phys. Rev. Lett., 100, 12, 128103 (2008)
[25] Langlands, T. A.M.; Henry, B. I.; Wearne, S. L., Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59, 6, 761-808 (2009) · Zbl 1232.92037
[26] Langlands, T. A.M.; Henry, B. I.; Wearne, S. L., Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions, SIAM J. Appl. Math., 71, 4, 1168-1203 (2011) · Zbl 1232.92038
[27] Liu, F.; Yang, Q.; Turner, I., Two new implicit numerical methods for the fractional cable equation, J. Comput. Nonlinear Dyn., 6, 1, 011009 (2011)
[28] Lin, Y. M.; Li, X. J.; Xu, C. J., Finite difference/spectral approximations for the fractional Cable equation, Math. Comp., 80, 275, 1369-1396 (2011) · Zbl 1220.78107
[29] Hu, X. L.; Zhang, L. M., Implicit compact difference schemes for the fractional cable equation, Appl. Math. Model., 36, 4027-4043 (2012) · Zbl 1252.74061
[30] Quintana-Murillo, J.; Yuste, S. B., An explicit numerical method for the fractional cable equation, Int. J. Differ. Equ., 2011, 12 (2011), Article ID 231920 · Zbl 1237.65097
[31] Chen, C. M.; Liu, F.; Burrage, K., Numerical analysis for a variable-order nonlinear cable equation, J. Comput. Appl. Math., 236, 2, 209-224 (2011) · Zbl 1243.65103
[32] Fairweather, G., Spline Collocation Methods for a class of hyperbolic partial integro-differential equations, SIAM J. Numer. Anal., 31, 2, 444-460 (1994) · Zbl 0814.65137
[33] Fernandes, R. I.; Fairweather, G., Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables, Numer. Methods Partial Differential Equations, 9, 191-211 (1993) · Zbl 0768.65067
[34] Robinson, M. P.; Fairweather, G., Orthogonal spline collocation methods for Schrödinger-type equations in one space variable, Numer. Math., 68, 355-376 (1994) · Zbl 0806.65123
[35] Bialecki, B.; Fairweather, G., Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math., 128, 55-82 (2001) · Zbl 0971.65105
[36] Pani, A. K.; Fairweather, G.; Fernandes, R. I., ADI orthogonal spline collocation methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 30, 248-276 (2010) · Zbl 1191.65186
[37] Pani, A. K.; Fairweather, G.; Fernandes, R. I., Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term, SIAM J. Numer. Anal., 46, 1, 344-364 (2008) · Zbl 1160.65068
[38] Fernandes, R. I.; Bialecki, B.; Fairweather, G., Alternating direction implicit orthogonal spline collocation methods for evolution equations, (Jacob, M. J.; Panda, S., Proceedings of the International Conference on Mathematical Modelling and Applications to Industrial Problems (MMIP-2011). Proceedings of the International Conference on Mathematical Modelling and Applications to Industrial Problems (MMIP-2011), Calicut, India, March 2011 (2012), Macmillan Publishers India Limited), 3-11
[39] Shen, J.; Wang, Z. Q., Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation, Found. Comput. Math., 13, 1, 99-137 (2013) · Zbl 1264.65168
[40] Wang, Z. Q.; Wang, L. L., A Legendre-Gauss collocation method for nonlinear delay differential equations, Discrete Contin. Dyn. Syst. Ser. B, 13, 685-708 (2010) · Zbl 1229.65140
[41] Sun, W., Spectral analysis of hermite cubic spline collocation systems, SIAM J. Numer. Anal., 36, 6, 1962-1975 (1999) · Zbl 0937.65110
[42] Sun, W., Block iterative algorithms for solving hermite bicubic collocation equations, SIAM J. Numer. Anal., 33, 2, 589-601 (1996) · Zbl 0853.65121
[43] Sun, W., Iterative algorithms for orthogonal spline collocation linear systems, SIAM J. Sci. Comput., 16, 3, 720-737 (1995) · Zbl 0826.65094
[44] Yang, X. H.; Zhang, H. X.; Xu, D., Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 256, 824-837 (2014) · Zbl 1349.65529
[45] Li, C.; Zhao, T. G.; Deng, W. H.; Wu, Y. J., Orthogonal spline collocation methods for the subdiffusion equation, J. Comput. Appl. Math., 255, 517-528 (2014) · Zbl 1291.65307
[46] Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Sanz-Serna, J. M., Product approximation for non-linear problems in the finite element method, IMA J. Numer. Anal., 1, 3, 253-266 (1981) · Zbl 0469.65072
[47] Douglas, J.; Dupont, T., Collocation Methods for Parabolic Equations in a Single Space Variable (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0279.65097
[48] Oldham, K. B.; Spanier, J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), Academic Press: Academic Press New York · Zbl 0292.26011
[49] Sun, Z. Z.; Wu, X. N., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[50] Fairweather, G., (Finite Element Galerkin Methods for Differential Equations. Finite Element Galerkin Methods for Differential Equations, Lecture Notes in Pure and Applied Mathematics, vol. 34 (1978), Marcel Dekker: Marcel Dekker New York) · Zbl 0372.65044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.