×

An improved unscented Kalman filter for discrete nonlinear systems with random parameters. (English) Zbl 1368.93731

Summary: This paper investigates the nonlinear Unscented Kalman Filtering (UKF) problem for discrete nonlinear dynamic systems with random parameters. We develop an improved unscented transformation by incorporating the random parameters into the state vector to enlarge the number of sigma points. The theoretical analysis reveals that the approximated mean and covariance via the improved unscented transformation match the true values correctly up to the third order of Taylor series expansion. Based on the improved unscented transformation, an improved UKF method is proposed to expand the application of the UKF for nonlinear systems with random parameters. An application to the mobile source localization with Time Difference Of Arrival (TDOA) measurements and sensor position uncertainties is provided where the simulation results illustrate that the improved UKF method leads to a superior performance in comparison with the normal UKF method.

MSC:

93E11 Filtering in stochastic control theory
93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
60G35 Signal detection and filtering (aspects of stochastic processes)

References:

[1] Kalman, R. E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82, 1, 35-45 (1960) · doi:10.1115/1.3662552
[2] Bolzon, G.; Fedele, R.; Maier, G., Parameter identification of a cohesive crack model by Kalman filter, Computer Methods in Applied Mechanics and Engineering, 191, 25-26, 2847-2871 (2002) · Zbl 1131.74308 · doi:10.1016/S0045-7825(02)00223-2
[3] Ball, M.; Wood, A., Trend growth in post-1850 British economic history: the Kalman filter and historical judgment, Journal of the Royal Statistical Society, 45, 2, 143-152 (1996)
[4] De Koning, W. L., Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 20, 113-115 (1984) · Zbl 0542.93062
[5] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M. I.; Sastry, S. S., Kalman filtering with intermittent observations, IEEE Transactions on Automatic Control, 49, 9, 1453-1464 (2004) · Zbl 1365.93512 · doi:10.1109/tac.2004.834121
[6] Luo, Y.; Zhu, Y.; Luo, D.; Zhou, J.; Song, E.; Wang, D., Globally optimal multisensor distributed random parameter matrices kalman filtering fusion with applications, Sensors, 8, 12, 8086-8103 (2008) · doi:10.3390/s8128086
[7] Chen, S.; Li, Y.; Qi, G.; Sheng, A., Adaptive Kalman estimation in target tracking mixed with random one-step delays, stochastic-bias measurements, and missing measurements, Discrete Dynamics in Nature and Society, 2013 (2013) · Zbl 1417.62265
[8] Chen, S.; Zhou, Z.; Li, S., An efficient estimate and forecast of the implied volatility surface: a nonlinear Kalman filter approach, Economic Modelling, 58, 655-664 (2016) · doi:10.1016/j.econmod.2016.06.003
[9] Bolognani, S.; Tubiana, L.; Zigliotto, M., Extended Kalman filter tuning in sensorless PMSM drives, IEEE Transactions on Industry Applications, 39, 6, 1741-1747 (2003) · doi:10.1109/TIA.2003.818991
[10] LaViola, J. J., A comparison of unscented and extended kalman filtering for estimating quaternion motion, Proceedings of the American Control Conference
[11] Qu, X.; Xie, L., Recursive source localisation by time difference of arrival sensor networks with sensor position uncertainty, IET Control Theory and Applications, 8, 18, 2305-2315 (2014) · doi:10.1049/iet-cta.2014.0245
[12] Julier, S. J.; Uhlmann, J. K.; Durrant-Whyte, H. F., New approach for filtering nonlinear systems, Proceedings of the American Control Conference
[13] Julier, S. J.; Uhlmann, J. K., Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92, 3, 401-422 (2004) · doi:10.1109/JPROC.2003.823141
[14] Pan, Q.; Yang, F.; Ye, L., Survey of a kind of non linear filters UKF, Control and Decision, 20, 5, 481-489 (2005)
[15] Eberle, C.; Ament, C., The Unscented Kalman Filter estimates the plasma insulin from glucose measurement, BioSystems, 103, 1, 67-72 (2011) · doi:10.1016/j.biosystems.2010.09.012
[16] Julier, S. J., Some relations between extended and unscented Kalman filters, IEEE Transactions on Signal Processing, 60, 2, 545-555 (2012) · Zbl 1391.93237 · doi:10.1109/tsp.2011.2172431
[17] Menegaz, H. M. T.; Ishihara, J. Y.; Borges, G. A.; Vargas, A. N., A systematization of the unscented Kalman filter theory, IEEE Transactions on Automatic Control, 60, 10, 2583-2598 (2015) · Zbl 1360.93705 · doi:10.1109/tac.2015.2404511
[18] Simon, D., Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (2006), Wiley-Interscience
[19] Lui, K. W.; Chan, F. K.; So, H. C., Semidefinite programming approach for range-difference based source localization, IEEE Transactions on Signal Processing, 57, 4, 1630-1633 (2009) · Zbl 1391.90459 · doi:10.1109/tsp.2008.2010599
[20] Qu, X.; Xie, L., An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements, Signal Processing, 119, 142-152 (2016) · doi:10.1016/j.sigpro.2015.08.001
[21] Yanni, G.; Qi, W., The nonsequential fusion method for localization from unscented kalman filter by multistation array buoys, Discrete Dynamics in Nature and Society, 2016 (2016) · Zbl 1417.62268 · doi:10.1155/2016/7670609
[22] Jazwinski, A. H., Stochastic Processes and Filtering Theory (1970), Cambridge, Mass, USA: Academic Press, Cambridge, Mass, USA · Zbl 0203.50101
[23] Daum, F., Nonlinear filters: beyond the kalman filter, IEEE Aerospace and Electronic Systems Magazine, 20, 8, 57-69 (2005) · doi:10.1109/maes.2005.1499276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.