×

Filtering-based multistage recursive identification algorithm for an input nonlinear output-error autoregressive system by using the key term separation technique. (English) Zbl 1368.93724

Summary: This paper derives a data filtering-based two-stage stochastic gradient algorithm and a data filtering-based multistage recursive least-squares algorithm for input nonlinear output-error autoregressive systems (i.e., Hammerstein systems). The output of the system is expressed as a linear combination of all system parameters based on the key term separation technique. The basic idea of the proposed algorithm is to filter the input-output data and to separate the parameter vector into several vectors and to interactively identify each parameter vector. The data filtering-based two-stage stochastic gradient algorithm has higher convergence rate than the stochastic gradient algorithm. Compared with the recursive generalized least-squares algorithm, the dimensions of the involved covariance matrices in the data filtering-based multistage recursive least-squares algorithm become small, and thus the data filtering-based multistage recursive least-squares algorithm has a higher computational efficiency. The numerical simulation results indicate that the proposed algorithms are effective.

MSC:

93E11 Filtering in stochastic control theory
93E25 Computational methods in stochastic control (MSC2010)
93E12 Identification in stochastic control theory
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] E.W. Bai, An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333-338 (1998) · Zbl 0915.93018 · doi:10.1016/S0005-1098(97)00198-2
[2] E.W. Bai, A blind approach to the Hammerstein-Wiener model identification. Automatica 38(6), 967-979 (2002) · Zbl 1012.93018 · doi:10.1016/S0005-1098(01)00292-8
[3] H.B. Chen, F. Ding, Hierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systems. Circuits Syst. Signal Process. 34(1), 61-75 (2015) · Zbl 1341.93089 · doi:10.1007/s00034-014-9839-9
[4] Y.N. Cao, Z.Q. Liu, Signal frequency and parameter estimation for power systems using the hierarchical dentification principle. Math. Comput. Model. 51(5-6), 854-861 (2010) · Zbl 1202.94116 · doi:10.1016/j.mcm.2010.05.015
[5] X. Cao, D.Q. Zhu, S.X. Yang, Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2015.2482501
[6] H.B. Chen, Y.S. Xiao, F. Ding, Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle. Appl. Math. Comput. 247, 1202-1210 (2014) · Zbl 1343.62055
[7] Z.Z. Chu, D.Q. Zhu, S.X. Yang, Observer-based adaptive neural network trajectory tracking control for remotely operated Vehicle. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2544786
[8] F. Ding, K.P. Deng, X.M. Liu, Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst. Signal Process. 33(9), 2881-2893 (2014) · doi:10.1007/s00034-014-9772-y
[9] J. Ding, C.X. Fan, J.X. Lin, Auxiliary model based parameter estimation for dual-rate output error systems with colored noise. Appl. Math. Model. 37(6), 4051-4058 (2013) · doi:10.1016/j.apm.2012.09.016
[10] J. Ding, J.X. Lin, Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique. Circuits Syst. Signal Process. 33(5), 1439-1449 (2014) · doi:10.1007/s00034-013-9704-2
[11] F. Ding, X.M. Liu, Y. Gu, An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. J. Franklin Inst. 353(2), 398-408 (2016) · Zbl 1395.93530 · doi:10.1016/j.jfranklin.2015.10.025
[12] F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-015-0190-6 · Zbl 1345.93169
[13] V.Z. Filipovic, Consistency of the robust recursive Hammerstein model identification algorithm. J. Franklin Inst. 352(5), 1932-1945 (2015) · Zbl 1395.93169 · doi:10.1016/j.jfranklin.2015.02.005
[14] L. Fang, J.D. Wang, Q.H. Zhang, Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model. Nonlinear Dyn. 79(2), 1257-1273 (2015) · Zbl 1345.93046 · doi:10.1007/s11071-014-1740-3
[15] F. Giri, E.W. Bai, Block-oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, vol. 404 (Springer-Verlag, Berlin, 2010) · Zbl 1201.93004
[16] S. Gibson, B. Ninness, Robust maximum-likelihood estimation of multivariable dynamic systems. Automatica 41(10), 1667-1682 (2005) · Zbl 1087.93054 · doi:10.1016/j.automatica.2005.05.008
[17] Y.B. Hu, B.L. Liu, Q. Zhou, C. Yang, Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises. Circuits Syst. Signal Process. 33(2), 655-664 (2014) · doi:10.1007/s00034-013-9652-x
[18] Y. Ji, X.M. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1-9 (2015) · Zbl 1331.34108 · doi:10.1007/s11071-014-1640-6
[19] Y. Ji, X.M. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499-1517 (2015) · Zbl 1341.93003 · doi:10.1007/s00034-014-9916-0
[20] H. Khodadadi, H. Jazayeri-Rad, Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor. Comput. Chem. Eng. 35(11), 2426-2436 (2011) · doi:10.1016/j.compchemeng.2010.12.010
[21] H. Karimi, K.B. McAuley, A maximum-likelihood method for estimating parameters, stochastic disturbance intensities and measurement noise variances in nonlinear dynamic models with process disturbances. Comput. Chem. Eng. 67, 178-198 (2014) · doi:10.1016/j.compchemeng.2014.04.007
[22] J.H. Li, Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91-96 (2013) · Zbl 1255.65119 · doi:10.1016/j.aml.2012.03.038
[23] X.G. Liu, J. Lu, Least squares based iterative identification for a class of multirate systems. Automatica 46(3), 549-554 (2010) · Zbl 1194.93079 · doi:10.1016/j.automatica.2010.01.007
[24] S. Mousazadeh, M. Karimi, Estimating multivariate ARCH parameters by two-stage least-squares method. Signal Process. 89(5), 921-932 (2009) · Zbl 1161.94350 · doi:10.1016/j.sigpro.2008.11.012
[25] M. Matinfar, M. Saeidy, B. Gharahsuflu, M. Eslami, Solutions of nonlinear chemistry problems by homotopy analysis. Comput. Math. Model. 25(1), 103-114 (2014) · Zbl 1305.65179 · doi:10.1007/s10598-013-9211-0
[26] J. Prakash, B. Huang, S.L. Shah, Recursive constrained state estimation using modified extended Kalman filter. Comput. Chem. Eng. 65, 9-17 (2014) · doi:10.1016/j.compchemeng.2014.02.013
[27] J. Paduart, L. Lauwers, R. Pintelon, J. Schoukens, Identification of a Wiener-Hammerstein system using the polynomial nonlinear state space approach. Control Eng. Pract. 20(11), 1133-1139 (2012) · doi:10.1016/j.conengprac.2012.06.006
[28] A. Savran, Discrete state space modeling and control of nonlinear unknown systems. ISA Trans. 52(6), 795-806 (2013) · doi:10.1016/j.isatra.2013.07.005
[29] Y. Shi, H. Fang, Kalman filter based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538-551 (2010) · Zbl 1222.93228 · doi:10.1080/00207170903273987
[30] T. Söderström, M. Hong, J. Schoukens, R. Pintelon, Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables and output error identification. Automatica 46(4), 721-727 (2010) · Zbl 1193.93180 · doi:10.1016/j.automatica.2010.01.026
[31] J. Vörös, Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics. IEEE Trans. Automat. Control 47(1), 184-188 (2002) · Zbl 1364.93173 · doi:10.1109/9.981742
[32] J. Vörös, Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Automat. Control 48(12), 2203-2206 (2003) · Zbl 1364.93172 · doi:10.1109/TAC.2003.820146
[33] L. Vanbeylen, R. Pintelon, J. Schoukens, Blind maximum likelihood identification of Hammerstein systems. Automatica 44(12), 3139-3146 (2008) · Zbl 1153.93522 · doi:10.1016/j.automatica.2008.05.013
[34] D.Q. Wang, Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648-1657 (2011) · doi:10.1049/iet-cta.2010.0416
[35] D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13-19 (2016) · Zbl 1336.93155 · doi:10.1016/j.aml.2015.12.018
[36] D.W. Wang, F. Ding, Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Inf. Sci. 355, 237-248 (2016) · Zbl 1458.93130 · doi:10.1016/j.ins.2016.03.037
[37] Y.J. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica (2016). doi:10.1016/j.automatica.2016.05.024 · Zbl 1343.93087
[38] Y.J. Wang, F. Ding, Recursive parameter estimation algorithms and convergence for a class of nonlinear systems with colored noise. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-015-0210-6 · Zbl 1346.93369
[39] Y.J. Wang, F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045-1053 (2016) · Zbl 1354.93158 · doi:10.1007/s11071-015-2548-5
[40] Y.J. Wang, F. Ding, Iterative estimation for a nonlinear IIR filter with moving average noise by means of the data filtering technique. IMA J. Math. Control Inf. (2016). doi:10.1093/imamci/dnv067 · Zbl 1417.93316
[41] Y.J. Wang, F. Ding, The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 10(8), 894-902 (2016)
[42] Y.J. Wang, F. Ding, The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique. Signal Process. 128, 212-221 (2016) · doi:10.1016/j.sigpro.2016.03.027
[43] X.H. Wang, F. Ding, Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems. Int. J. Adapt. Control Signal Process. (2016). doi:10.1002/acs.2642 · doi:10.1002/acs.2642
[44] C. Wang, T. Tang, Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dynam. 77(3), 769-780 (2014) · Zbl 1314.93013 · doi:10.1007/s11071-014-1338-9
[45] J. Wang, Q. Zhang, Detection of asymmetric control valve stiction from oscillatory data using an extended Hammerstein system identification method. J. Process Control 24(1), 1-12 (2014) · doi:10.1016/j.jprocont.2013.10.012
[46] D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. 352(11), 5292-5370 (2015) · Zbl 1395.93287 · doi:10.1016/j.jfranklin.2015.09.007
[47] W.G. Zhang, Decomposition based least squares iterative estimation for output error moving average systems. Eng. Comput. 31(4), 709-725 (2014) · doi:10.1108/EC-07-2012-0154
[48] H. Zhang, Y. Shi, A.S. Mehr, Robust H-infty PID control for multivariable networked control systems with disturbance/noise attenuation. Int. J. Robust Nonlinear Control 22(2), 183-204 (2012) · Zbl 1244.93047 · doi:10.1002/rnc.1688
[49] Z.G. Zhao, B. Huang, F. Liu, Parameter estimation in batch process using EM algorithm with particle filter. Comput. Chem. Eng. 57, 159-172 (2013) · doi:10.1016/j.compchemeng.2013.03.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.