×

Type of noise defines global attractors in bistable molecular regulatory systems. (English) Zbl 1368.92053

Summary: The aim of this study is to demonstrate that in molecular dynamical systems with the underlying bi- or multistability, the type of noise determines the most strongly attracting steady state or stochastic attractor. As an example we consider a simple stochastic model of autoregulatory gene with a nonlinear positive feedback, which in the deterministic approximation has two stable steady state solutions. Three types of noise are considered: transcriptional and translational - due to the small number of gene product molecules and the gene switching noise - due to gene activation and inactivation transitions. We demonstrate that the type of noise in addition to the noise magnitude dictates the allocation of probability mass between the two stable steady states. In particular, we found that when the gene switching noise dominates over the transcriptional and translational noise (which is characteristic of eukaryotes), the gene preferentially activates, while in the opposite case, when the transcriptional noise dominates (which is characteristic of prokaryotes) the gene preferentially remains inactive. Moreover, even in the zero-noise limit, when the probability mass generically concentrates in the vicinity of one of two steady states, the choice of the most strongly attracting steady state is noise type-dependent. Although the epigenetic attractors are defined with the aid of the deterministic approximation of the stochastic regulatory process, their relative attractivity is controlled by the type of noise, in addition to noise magnitude. Since noise characteristics vary during the cell cycle and development, such mode of regulation can be potentially employed by cells to switch between alternative epigenetic attractors.

MSC:

92C40 Biochemistry, molecular biology

References:

[1] Acar, M.; Becskei, A.; van Oudenaarden, A., Enhancement of cellular memory by reducing stochastic transitions, Nature, 435, 228-232 (2005)
[2] Ackers, G. K.; Johnson, A. D.; Shea, M. A., Quantitative model for gene regulation by lambda phage repressor, Proc. Natl. Acad. Sci. U.S.A., 79, 1129-1133 (1982)
[3] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell (2002), Garland Science: Garland Science New York
[4] Becksei, A.; Kaufmann, B. B.; van Oudenaarden, A., Contributions of low molecule number and chromosomal positioning to stochastic gene expression, Nat. Genet., 37, 937-944 (2005)
[5] Becskei, A.; Seraphin, B.; Serrano, L., Positive feedback in eucaryotic gene networkscell differentiation by graded to binary response conversion, EMBO J., 20, 2528-2535 (2001)
[6] Bernstein, J. A.; Khodursky, A. B.; Lin, P.-H.; Lin-Chao, S.; Cohen, S. N., Global analysis of mRNA decay and abundance in Escherichia coliat single-gene resolution using two-color fluorescent DNA microarrays, Proc. Natl. Acad. Sci. U.S.A., 99, 9697-9702 (2002)
[7] Blake, W. J.; Kaern, M.; Cantor, C. R.; Collins, J. J., Noise in eukaryotic gene expression, Nature, 422, 633-637 (2003)
[8] Bobrowski, A., Degenerate convergence of semigroups related to a model of stochastic gene expression, Semigroup Forum, 73, 345-366 (2006) · Zbl 1114.47068
[9] Bobrowski, A.; Lipniacki, T.; Pichór, K.; Rudnicki, R., Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression, J. Math. Anal. Appl., 333, 753-769 (2007) · Zbl 1115.92018
[10] Bremer, H.; Hymes, J.; Dennis, P. P., Ribosomal RNA chain growth rate and RNA labelling patterns in Escherichia Coli, J. Theor. Biol., 45, 379-403 (1974)
[11] Campos-Ortega, J. A., The Embryonic Development of Drosophila Melanogaster (1997), Springer
[12] Chang, H. H.; Oh, P. Y.; Ingber, D. E.; Huang, S., Multistable and multistep dynamics in neutrophil differentiation, BMC Cell. Biol., 7, 11 (2006)
[13] Chatterjee, A.; Kaznessis, Y. N.; Hu, W.-S., Tweaking biological switches through a better understanding of bistability behavior, Curr. Opin. Biotechnol., 19, 475-481 (2008)
[14] Chen, C.; Deutscher, M. P., RNase R is a highly unstable protein regulated by growth phase and stress, RNA, 16, 667-672 (2010)
[15] Chubb, J. R.; Trcek, T.; Shenoy, S. M.; Singer, R. H., Transcriptional pulsing of a developmental gene, Curr. Biol., 16, 1018-1025 (2006)
[16] Cohen, A. A.; Kalisky, T.; Mayo, A.; Geva-Zatorsky, N.; Danon, T.; Issaeva, I.; Kopito, R. B.; Perzov, N.; Milo, R.; Sigal, A.; Alon, U., Protein dynamics in individual human cellsexperiment and theory, PLoS One, 4, e4901 (2009)
[17] El-Samad, H.; Kurata, H.; Doyle, J. C.; Gross, C. A.; Khammash, M., Surviving heat shockcontrol strategies for robustness and performance, Proc. Natl. Acad. Sci. U.S.A., 102, 2736-2741 (2005)
[18] Frigola, D.; Casanellas, L.; Sancho, J. M.; Ibanes, M., Asymmetric stochastic switching driven by intrinsic molecular noise, PLoS One, 7, e31407 (2012)
[19] Galau, G. A.; Klein, W. H.; Britten, R. J.; H Davidson, E., Significance of rare mRNA sequences in liver, Arch. Biochem. Biophys., 179, 584-599 (1977)
[20] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1143.60001
[21] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340-2361 (1977)
[22] Golding, I.; Paulsson, J.; Zawilski, S. M.; Cox, E. C., Real-time kinetics of gene activity in individual bacteria, Cell, 123, 1025-1036 (2005)
[23] Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R., Correlation between protein and mRNA abundance in yeast, Mol. Cell. Biol., 19, 1720-1730 (1999)
[24] Hargrove, J. L., Microcomputer-assisted kinetic modeling of mammalian gene expression, FASEB J., 7, 1163-1170 (1993)
[25] Haseltine, E. L.; Rawlings, J. B., Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117, 6959-6969 (2002)
[26] Hasty, J.; Pradines, J.; Dolnik, M.; Collins, J. J., Noise-based switches and amplifiers for gene expression, Proc. Natl. Acad. Sci. U.S.A., 97, 2075-2080 (2000)
[27] Hat, B.; Paszek, P.; Kimmel, M.; Piechor, K.; Lipniacki, T., How the number of alleles influences gene expression, J. Statist. Phys., 128, 511-533 (2007) · Zbl 1115.92028
[28] Hornos, J. E.M.; Schultz, D.; Innocentini, G. C.P.; Wang, J.; Walczak, A. M.; Onuchic, J. N.; Wolynes, P. G., Self-regulating genean exact solution, Phys. Rev. E, 72, 051907 (2005)
[29] Jayapal, K. P.; Sui, S.; Philp, R. J.; Kok, Y.-J.; Yap, M. G.S.; Griffin, T. J.; Hu, W.-S., Multitagging proteomic strategy to estimate protein turnover rates in dynamic Systems, J. Proteome Res., 9, 2087-2097 (2010)
[30] Kafatos, F. C., The cocoonase zymogen cells of silk mothsmodel of terminal cell differentiation for specific protein synthesis, Curr. Topics Dev. Biol., 7, 125-191 (1972)
[31] Karmakar, R.; Bose, I., Positive feedback, stochasticity and genetic competence, Phys. Biol., 4, 29-37 (2007)
[32] Kennell, D.; Riezman, H., Transcription and translation initiation frequencies of the Escherichia coli lac operon, J. Mol. Biol., 114, 1-21 (1977)
[33] Kepler, T. B.; Elston, T. C., Stochasticity in transcriptional regulationorigins, consequences, and mathematical representations, Biophys. J., 81, 3116-3136 (2001)
[34] Kierzek, A. M.; Zaim, J.; Zielenkiewicz, P., The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression, J. Biol. Chem., 276, 8165-8172 (2001)
[35] Ko, M. S.H., Stochastic model for gene induction, J. Theor. Biol., 153, 181-194 (1991)
[36] Kussell, E.; Leibler, S., Phenotypic diversity, and information in fluctuating environments, Science, 309, 2075-2078 (2005)
[37] Laursen, B. S.; Soerensen, H. P.; Mortensen, K. K.; Sperling-Petersen, H. U., Initiation of protein synthesis in bacteria, Microbiol. Mol. Biol. Rev., 69, 101-123 (2005)
[38] Lipniacki, T.; Paszek, P.; Marciniak-Czochra, A.; Brasier, A. R.; Kimmel, M., Transcriptional stochasticity in gene expression, J. Theor. Biol., 238, 348-367 (2006) · Zbl 1445.92113
[39] Lipniacki, T.; Puszynski, K.; Paszek, P.; Brasier, A. R.; Kimmel, M., Single \(\operatorname{TNF} \alpha\) trimers mediating \(\operatorname{NF} - \kappa B\) activation: stochastic robustness of \(\operatorname{NF} - \kappa B\) signaling, BMC Bioinformatics, 8, 376 (2007)
[40] Lipniacki, T.; Hat, B.; Faeder, J. R.; Hlavacek, W. S., Stochastic effects and bistability in T cell receptor signaling, J. Theor. Biol., 254, 110-122 (2008) · Zbl 1400.92173
[41] Lipshtat, A.; Loinger, A.; Balaban, N. Q.; Biham, O., Genetic toggle switch without cooperative binding, Phys. Rev. Lett., 96, 188101 (2006)
[42] Marquez-Lago, T. T.; Stelling, J., Counter-intuitive stochastic behavior of simple gene circuits with negative feedback, Biophys. J., 98, 1742-1750 (2010)
[43] McAdams, H. H.; Arkin, A., Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. U.S.A., 94, 814-819 (1997)
[44] Miekisz, J., Equilibrium selection in evolutionary? games with random matching of players, J. Theor. Biol., 232, 47-53 (2005) · Zbl 1442.91012
[45] Mortazavi, A.; Williams, B. A.; McCue, K.; Schaeffer, L.; Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, 5, 621-628 (2008)
[46] Nevozhay, D.; Adams, R. M.; Van Itallie, E.; Bennett, M. R.; Balazsi, G., Mapping the environmental fitness landscape of a synthetic gene circuit, PLoS Comput. Biol., 8, e1002480 (2012)
[47] Nieuwkoop, P. D.; Faber, J., Normal Table of Xenopus laevis (Daudin) (1994), Garland Publishing Inc: Garland Publishing Inc New York, London
[48] Ochab-Marcinek, A.; Tabaka, M., Bimodal gene expression in noncooperative regulatory systems, Proc. Natl. Acad. Sci. U.S.A., 107, 22096-22101 (2010)
[49] Ozbudak, E. M.; Thattai, M.; Kurtser, I.; Grossman, A. D.; Oudenaarden, A., Regulation of noise in the expression of a single gene, Nat. Genet., 31, 69-73 (2002)
[50] Ozbudak, E. M.; Thattai, M.; Lim, H. N.; Shraiman, B. I.; Oudenaarden, A., Multistability in the lactose utilization network of Escherichia coli, Nature, 427, 737-740 (2004)
[51] Ptashne, M., A Genetic SwitchPhage Lambda Revisited (2004), Cold Harbor Spring Laboratory Press
[52] Puszynski, K.; Hat, B.; Lipniacki, T., Oscillations and bistability in the stochastic model of p53 regulation, J. Theor. Biol., 254, 452-465 (2008) · Zbl 1400.92200
[53] Raj, A.; Oudenaarden, A., Single-molecule approaches to stochastic gene expression, Annu. Rev. Biophys., 38, 255-270 (2009)
[54] Raj, A.; Peskin, C. S.; Tranchina, D.; Vargas, D. Y.; Tyagi, S., Stochastic mRNA synthesis in mammalian cells, PloS Biol., 4, 1707-1719 (2006)
[55] Raser, J. M.; O’Shea, E. K., Control of stochasticity in eukaryotic gene expression, Science, 304, 1811-1814 (2004)
[56] Rosenfeld, N.; Elowitz, M.; Alon, U., Negative autoregulation speeds the response times of transcription networks, J. Mol. Biol., 323, 785-793 (2002)
[57] Sampson, L. L.; Hendrix, R. W.; Huang, W. M.; Casjens, S. R., Translation initiation controls the relative rates of expression of the bacteriophage \(\lambda\) late genes, Proc. Natl. Acad. Sci. U.S.A., 85, 5439-5443 (1988)
[58] Schultz, D.; Onuchic, J. N.; Wolynes, P. G., Understanding stochastic simulations of the smallest genetic networks, J. Chem. Phys., 126, 245102 (2007)
[59] Shahrezaei, V.; Swain, P. S., Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. U.S.A., 105, 17256-17261 (2008)
[60] Siegal-Gaskins, D.; Grotewold, E.; Smith, G. D., The capacity for multistability in small gene regulatory networks, BMC Syst. Biol., 3, 96 (2009)
[61] Sims, C. E.; Allbritton, N. L., Analysis of single mammalian cells on-chip, Lab Chip, 7, 423-440 (2007)
[62] Sprinzak, D.; Lakhanpal, A.; Lebon, L.; Santat, L. A.; Fontes, M. E.; Anderson, G. A.; Garcia-Ojalvo, J.; Elowitz, M. B., Cis-interactions between Notch and Delta generate mutually exclusive signalling states, Nature, 465, 86-90 (2010)
[63] Swain, P. S.; Elowitz, M. B.; Siggia, E. D., Intrinsic and extrinsic contributions to stochasticity in gene expression, Proc. Natl. Acad. Sci. U.S.A., 99, 12795-12800 (2002)
[64] Taniguchi, Y.; Choi, P. J.; Li, G. W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X. S., Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells, Science, 329, 533-538 (2010)
[65] Tay, S.; Hughey, J.; Lee, T.; Lipniacki, T.; Quake, S. R.; Covert, M. W., Single-cell NF-\( \kappa B\) dynamics reveal digital activation and analogue information processing, Nature, 466, 267-271 (2010)
[66] Thattai, M.; Oudenaarden, A., Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. U.S.A., 98, 8614-8619 (2001)
[67] Turner, D. A.; Paszek, P.; Woodcock, D. J.; Nelson, D. E.; Horton, C. A.; Wang, Y.; Spiller, D. G.; Rand, D. A.; White, M. R.H.; Harper, C. V., Physiological levels of TNF \(\alpha\) stimulation induce stochastic dynamics of NF-\( \kappa B\) responses in single living cells, J. Cell Sci., 123, 2834-2843 (2010)
[68] van Kampen, N. G., Stochastic Processes in Physics and Chemistry (2007), Elsevier Science & Technology Books · Zbl 0974.60020
[69] van Sinderen, D.; Vemnema, G., comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis, J. Bacteriol., 176, 5762-5770 (1994)
[70] Vellela, M.; Qian, H., Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical systemthe Schloegl model revisited, J. R. Soc. Interface, 6, 925-940 (2009)
[71] Walczak, A. M.; Onuchic, J. N.; Wolynes, P. G., Absolute rate theories of epigenetic stability, Proc. Natl. Acad. Sci. U.S.A., 102, 18926-18931 (2005)
[72] Young, R.; Bremer, H., Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate, Biochem. J., 160, 185-194 (1976)
[73] Zuk, P. J.; Kochanczyk, M.; Jaruszewicz, J.; Bednorz, W.; Lipniacki, T., Dynamics of a stochastic spatially extended system predicted by comparing deterministic and stochastic attractors of the corresponding birth death process, Phys. Biol., 9, 055002 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.