×

Quantum limits to mass sensing in a gravitational field. (English) Zbl 1368.81037

Summary: We address the problem of estimating the mass of a quantum particle in a gravitational field and seek the ultimate bounds to precision of quantum-limited detection schemes. In particular, we study the effect of the field on the achievable sensitivity and address the question of whether quantumness of the probe state may provide a precision enhancement. The ultimate bounds to precision are quantified in terms of the corresponding quantum Fisher information. Our results show that states with no classical limit perform better than semiclassical ones and that a non-trivial interplay exists between the external field and the statistical model. More intense fields generally lead to a better precision, with the exception of position measurements in the case of freely-falling systems.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81V17 Gravitational interaction in quantum theory
62G05 Nonparametric estimation
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory

References:

[1] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett.96 010401 · doi:10.1103/PhysRevLett.96.010401
[2] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon.5 222-9 · doi:10.1038/nphoton.2011.35
[3] Braunstein S L and Caves C M 1994 Phys. Rev. Lett.72 3439 · Zbl 0973.81509 · doi:10.1103/PhysRevLett.72.3439
[4] Amari S and Nagaoka H 2007 Methods of Information Geometry (Providence, RI: American Mathematical Society) · doi:10.1090/mmono/191
[5] Paris M G A 2009 Int. J. Quantum Inf.7 125-37 · Zbl 1162.81351 · doi:10.1142/S0219749909004839
[6] Seveso L, Rossi M A and Paris M G 2017 Phys. Rev. A 95 012111 · doi:10.1103/PhysRevA.95.012111
[7] Cramér H 1945 Mathematical Methods of Statistics vol 9 (Princeton, NJ: Princeton University Press) · Zbl 0063.01843
[8] Holevo A S 2001 Statistical Structure of Quantum Theory vol 61 (Berlin: Springer) · Zbl 0999.81001 · doi:10.1007/3-540-44998-1
[9] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic) · Zbl 1332.81011
[10] Chryssomalakos C and Sudarsky D 2003 Gen. Relativ. Gravit.35 605-17 · Zbl 1025.83023 · doi:10.1023/A:1022957916776
[11] Anandan J 1980 Found. Phys.10 601-29 · doi:10.1007/BF00715042
[12] Sonego S 1995 Phys. Lett. A 208 · Zbl 1020.83634 · doi:10.1016/0375-9601(95)00743-M
[13] Sakurai J J and Napolitano J 2011 Modern Quantum Mechanics (Reading, MA: Addison-Wesley)
[14] Colella R, Overhauser A W and Werner S A 1975 Phys. Rev. Lett.34 1472 · doi:10.1103/PhysRevLett.34.1472
[15] Gea-Banacloche J 1999 Am. J. Phys.67 776-82 · doi:10.1119/1.19124
[16] Doncheski M and Robinett R 2001 Am. J. Phys.69 1084-90 · doi:10.1119/1.1383598
[17] Nesvizhevsky V V, Börner H, Gagarski A, Petrov G, Petukhov A, Abele H, Bäßler S, Stöferle T and Soloviev S 2000 Nucl. Instrum. Methods A 440 754-9 · doi:10.1016/S0168-9002(99)01077-3
[18] Ekinci K, Yang Y and Roukes M 2004 J. Appl. Phys.95 2682-9 · doi:10.1063/1.1642738
[19] Schwab K C and Roukes M L 2005 Phys. Today58 36-42 · doi:10.1063/1.2012461
[20] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature482 63-7 · doi:10.1038/nature10787
[21] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys., NY247 135-73 · Zbl 0881.47046 · doi:10.1006/aphy.1996.0040
[22] Brody D C and Hughston L P 1998 Proc. R. Soc. A 454 2445-75 · Zbl 0947.62006 · doi:10.1098/rspa.1998.0266
[23] Brody D C and Hughston L P 1999 Proc. R. Soc. A 455 1683-715 · Zbl 1006.82004 · doi:10.1098/rspa.1999.0376
[24] Kiefer C and Singh T P 1991 Phys. Rev.44 1067 · doi:10.1103/PhysRevD.44.1067
[25] Nesvizhevsky V V et al 2002 Nature415 297-9 · doi:10.1038/415297a
[26] Kennard E H 1927 Z. Phys.44 326-52 · JFM 53.0853.02 · doi:10.1007/BF01391200
[27] Kennard E 1929 J. Franklin Inst.207 47-78 · JFM 57.1212.06 · doi:10.1016/S0016-0032(29)91274-6
[28] Avron J and Herbst I 1977 Commun. Math. Phys.52 239-54 · Zbl 0351.47007 · doi:10.1007/BF01609485
[29] Pang S and Brun T A 2014 Phys. Rev. A 90 022117 · doi:10.1103/PhysRevA.90.022117
[30] Zimmermann M, Efremov M, Roura A, Schleich W, DeSavage S, Davis J, Srinivasan A, Narducci F, Werner S and Rasel E 2016 arXiv:1609.02337
[31] Seveso L and Paris M G 2016 arXiv:1612.07331
[32] Della Valle G, Savoini M, Ornigotti M, Laporta P, Foglietti V, Finazzi M, Duò L and Longhi S 2009 Phys. Rev. Lett.102 180402 · doi:10.1103/PhysRevLett.102.180402
[33] Jenke T, Geltenbort P, Lemmel H and Abele H 2011 Nat. Phys.7 468-72 · doi:10.1038/nphys1970
[34] Voronin A Y, Nesvizhevsky V, Dufour G and Reynaud S 2016 J. Phys. B: At. Mol. Opt. Phys.49 054001 · doi:10.1088/0953-4075/49/5/054001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.