×

Stabilisation of parabolic semilinear equations. (English) Zbl 1367.93528

Summary: We design here a finite-dimensional feedback stabilizing Dirichlet boundary controller for the equilibrium solutions to parabolic equations. These results extend that ones in V.Barbu [Boundary stabilization of equilibrium solutions to parabolic e1uations, IEEE Transactions on Automatic Control, 58(9), 2416-2420 (2013)], which provide a feedback controller expressed in terms of the eigenfunctions \(\phi_j\) corresponding to the unstable eigenvalues \(\{\lambda_j\}^N_{j=1}\) of the operator corresponding to the linearised equation. In [loc. cit.], the stabilizability result is conditioned by the require of linear independence of \(\{\frac{\partial}{\partial\nu}\phi_j\}^N_{j=1}\), on the part of the boundary where control acts. In this work, we design a similar control as in Barbu (2013), and show that it assures the stability of the system. This time, we drop the requirement of linear independence and any other additional hypothesis. Some examples are provided in order to illustrate the acquired results. More exactly, boundary stabilization of the heat equation and the Fitzhugh-Nagumo equation is proved.

MSC:

93D15 Stabilization of systems by feedback
93C20 Control/observation systems governed by partial differential equations
35K91 Semilinear parabolic equations with Laplacian, bi-Laplacian or poly-Laplacian
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1137/090778146 · Zbl 1217.93137 · doi:10.1137/090778146
[2] DOI: 10.3166/ejc.8.165-175 · Zbl 1293.93404 · doi:10.3166/ejc.8.165-175
[3] DOI: 10.1137/110837164 · Zbl 1292.93100 · doi:10.1137/110837164
[4] DOI: 10.1109/TAC.2013.2254013 · Zbl 1369.93475 · doi:10.1109/TAC.2013.2254013
[5] DOI: 10.1016/j.na.2005.09.012 · Zbl 1098.35025 · doi:10.1016/j.na.2005.09.012
[6] DOI: 10.1109/9.975513 · Zbl 1006.93039 · doi:10.1109/9.975513
[7] Bourbaki N., Théories spectrales (2007)
[8] DOI: 10.1016/S0006-3495(61)86902-6 · doi:10.1016/S0006-3495(61)86902-6
[9] Lasiecka I., Control theory for partial differential equations: continuous and approximation theories (2000) · Zbl 0942.93001
[10] DOI: 10.1016/j.na.2015.03.012 · Zbl 1320.35261 · doi:10.1016/j.na.2015.03.012
[11] Liu H.B., Boundary feedback stabilization of Fisher’s equations
[12] DOI: 10.1016/j.jmaa.2013.11.018 · Zbl 1307.93327 · doi:10.1016/j.jmaa.2013.11.018
[13] DOI: 10.1080/00207179.2014.964780 · Zbl 1328.93207 · doi:10.1080/00207179.2014.964780
[14] DOI: 10.1016/j.jde.2015.02.010 · Zbl 1314.45011 · doi:10.1016/j.jde.2015.02.010
[15] DOI: 10.1016/j.automatica.2005.04.006 · Zbl 1086.93023 · doi:10.1016/j.automatica.2005.04.006
[16] DOI: 10.1007/BF01442895 · Zbl 0434.35016 · doi:10.1007/BF01442895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.