×

Spectral variational integrators for semi-discrete Hamiltonian wave equations. (English) Zbl 1367.65192

Summary: In this paper, we present a highly accurate Hamiltonian structure-preserving numerical method for simulating Hamiltonian wave equations. This method is obtained by applying spectral variational integrators (SVI) to the system of Hamiltonian ordinary differential equations (ODEs) which are derived from the spatial semi-discretization of the Hamiltonian partial differential equation (PDE). The spatial variable is discretized by using high-order symmetric finite-differences. An efficient implementation of SVI for high-dimensional systems of ODEs is presented.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ascher, U. M.; McLachlan, R. I., On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput., 25, 1-2, 83-104 (2005) · Zbl 1203.65277
[2] Hu, W.; Deng, Z.; Han, S.; Zhang, W., Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs, J. Comput. Phys., 235, 394-406 (2013) · Zbl 1291.65361
[3] Sun, Y.; Tse, P. S.P., Symplectic and multisymplectic numerical methods for Maxwell’s equations, J. Comput. Phys., 230, 5, 2076-2094 (2011) · Zbl 1210.78029
[4] Marsden, J. E.; Patrick, G. W.; Shkoller, S., Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199, 2, 351-395 (1998) · Zbl 0951.70002
[5] Bridges, T. J., Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121, 1, 147-190 (1997) · Zbl 0892.35123
[6] Brugnano, L.; Frasca Caccia, G.; Iavernaro, F., Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270, 842-870 (2015) · Zbl 1410.65477
[7] Gotay, M. J., A multisymplectic framework for classical field theory and the calculus of variations. I. Covariant Hamiltonian formalism, (Mechanics, Analysis and Geometry: 200 Years after Lagrange. Mechanics, Analysis and Geometry: 200 Years after Lagrange, North-Holland Delta Ser. (1991), North-Holland: North-Holland Amsterdam), 203-235 · Zbl 0741.70012
[8] Lew, A.; Marsden, J. E.; Ortiz, M.; West, M., Asynchronous variational integrators, Arch. Ration. Mech. Anal., 167, 2, 85-146 (2003) · Zbl 1055.74041
[9] Bridges, T. J.; Reich, S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284, 4-5, 184-193 (2001) · Zbl 0984.37104
[10] Chen, J.-B.; Qin, M.-Z., Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal., 12, 193-204 (2001), electronic · Zbl 0980.65108
[11] McLachlan, R. I.; Ryland, B. N.; Sun, Y., High order multisymplectic Runge-Kutta methods, SIAM J. Sci. Comput., 36, 5, A2199-A2226 (2014) · Zbl 1310.37044
[12] Hall, J.; Leok, M., Spectral variational integrators, Numer. Math., 130, 4, 681-740 (2015) · Zbl 1359.37143
[14] Leok, M.; Shingel, T., General techniques for constructing variational integrators, Front. Math. China, 7, 2, 273-303 (2012) · Zbl 1257.65072
[15] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[16] Li, Yiqun; Wu, Boying; Leok, Melvin, Spectral-collocation variational integrators, J. Comput. Phys., 332, 83-98 (2017) · Zbl 1380.65418
[17] Amodio, P.; Sgura, I., High-order finite difference schemes for the solution of second-order BVPs, J. Comput. Appl. Math., 176, 1, 59-76 (2005) · Zbl 1073.65061
[18] Weideman, J. A.C.; Reddy, S. C., A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 26, 4, 465-519 (2000)
[19] Amodio, P.; Iavernaro, F., Symmetric boundary value methods for second order initial and boundary value problems, Mediterr. J. Math., 3, 3-4, 383-398 (2006) · Zbl 1117.65107
[20] Trefethen, Lloyd N., Spectral Methods in MatLab (2000), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 0953.68643
[21] Ablowitz, M. J.; Herbst, B. M.; Schober, C. M., On the numerical solution of the sine-Gordon equation. II. Performance of numerical schemes, J. Comput. Phys., 131, 2, 354-367 (1997) · Zbl 0874.65076
[22] Ober-Blöbaum, S.; Saake, N., Construction and analysis of higher order Galerkin variational integrators, Adv. Comput. Math., 41, 6, 955-986 (2015) · Zbl 1337.37063
[23] Henry, Myron S.; Roulier, John A., Geometric convergence of chebyshev rational approximations on \([0, + \infty)\), J. Approx. Theory, 21, 4, 361-374 (1977) · Zbl 0372.41010
[24] Gaier, D., Polynomial approximation of piecewise analytic functions, J. Anal., 4, 67-79 (1996) · Zbl 0876.41015
[25] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 2, 430-455 (2002) · Zbl 1005.65069
[26] Kassam, Aly-Khan; Trefethen, Lloyd N., Fourth-order time-stepping for stiff pdes, SIAM J. Sci. Comput., 26, 4, 1214-1233 (2005) · Zbl 1077.65105
[27] Khaliq, A. Q.M.; Martín-Vaquero, J.; Wade, B. A.; Yousuf, M., Smoothing schemes for reaction-diffusion systems with nonsmooth data, J. Comput. Appl. Math., 223, 1, 374-386 (2009) · Zbl 1155.65062
[28] Higham, Nicholas J., The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26, 4, 1179-1193 (2005) · Zbl 1081.65037
[29] Hochbruck, Marlis; Lubich, Christian; Selhofer, Hubert, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 5, 1552-1574 (1998) · Zbl 0912.65058
[30] Niesen, Jitse; Wright, Will M., Algorithm 919: A krylov subspace algorithm for evaluating the \(\phi \)-functions appearing in exponential integrators, ACM Trans. Math. Software, 38, 3, 22:1-22:19 (2012) · Zbl 1365.65185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.