×

Error estimation for quadrature by expansion in layer potential evaluation. (English) Zbl 1367.65154

Summary: In boundary integral methods it is often necessary to evaluate layer potentials on or close to the boundary, where the underlying integral is difficult to evaluate numerically. Quadrature by expansion (QBX) is a new method for dealing with such integrals, and it is based on forming a local expansion of the layer potential close to the boundary. In doing so, one introduces a new quadrature error due to nearly singular integration in the evaluation of expansion coefficients. Using a method based on contour integration and calculus of residues, the quadrature error of nearly singular integrals can be accurately estimated. This makes it possible to derive accurate estimates for the quadrature errors related to QBX, when applied to layer potentials in two and three dimensions. As examples we derive estimates for the Laplace and Helmholtz single layer potentials. These results can be used for parameter selection in practical applications.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures

Software:

DLMF

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10 edn. U.S. Govt. Print Off, Washington (1972) · Zbl 0543.33001
[2] Barnett, A.H.: Evaluation of layer potentials close to the boundary for laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput. 36(2), A427-A451 (2014). doi:10.1137/120900253 · Zbl 1298.65184 · doi:10.1137/120900253
[3] Barrett, W.: Convergence properties of Gaussian quadrature formulae. Comput. J. 3(4), 272-277 (1961). doi:10.1093/comjnl/3.4.272 · Zbl 0098.31703 · doi:10.1093/comjnl/3.4.272
[4] Brass, H., Fischer, J.W., Petras, K.: The Gaussian quadrature method. Abh. Braunschweig. Wiss. Ges. 47, 115-150 (1996) · Zbl 0935.65013
[5] Brass, H., Petras, K.: Quadrature theory. In: Mathematical Surveys and Monographs, vol. 178. American Mathematical Society, Providence (2011), 10.1090/surv/178 · Zbl 1231.65059
[6] Donaldson, J.D., Elliott, D.: A unified approach to quadrature rules with asymptotic estimates of their remainders. SIAM J. Numer. Anal. 9(4), 573-602 (1972). doi:10.1137/0709051 · Zbl 0264.65020 · doi:10.1137/0709051
[7] Elliott, D., Johnston, B.M., Johnston, P.R.: Clenshaw-Curtis and Gauss-Legendre quadrature for certain boundary element integrals. SIAM J. Sci. Comput. 31(1), 510-530 (2008). doi:10.1137/07070200X · Zbl 1186.65030 · doi:10.1137/07070200X
[8] Epstein, C.L., Greengard, L., Klöckner, A.: On the convergence of local expansions of layer potentials. SIAM J. Numer. Anal. 51(5), 2660-2679 (2013). doi:10.1137/120902859 · Zbl 1281.65047 · doi:10.1137/120902859
[9] Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the laplace equation in three dimensions. Acta Numer. 6, 229 (1997). doi:10.1017/S0962492900002725 · Zbl 0889.65115 · doi:10.1017/S0962492900002725
[10] Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227(5), 2899-2921 (2008). doi:10.1016/j.jcp.2007.11.024 · Zbl 1135.65404 · doi:10.1016/j.jcp.2007.11.024
[11] Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332-349 (2013). doi:10.1016/j.jcp.2013.06.027 · Zbl 1349.65094 · doi:10.1016/j.jcp.2013.06.027
[12] NIST: Digital Library of Mathematical Functions. Release 1.0.10 of 2015-08-07. http://dlmf.nist.gov/ · Zbl 1019.65001
[13] Rachh, M., Klöckner, A., O’Neil, M.: Fast algorithms for Quadrature by Expansion I: Globally valid expansions. arXiv:1602.05301v1[math.NA] (2016) · Zbl 1378.65074
[14] Tlupova, S., Beale, J.T.: Nearly singular integrals in 3D stokes flow. Commun. Comput. Phys. 14(5), 1207-1227 (2013). doi:10.4208/cicp.020812.080213a · Zbl 1373.76153 · doi:10.4208/cicp.020812.080213a
[15] Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385-458 (2014). doi:10.1137/130932132 · Zbl 1307.65031 · doi:10.1137/130932132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.