×

On the full and global accuracy of a compact third order WENO scheme. II. (English) Zbl 1367.65119

Karasözen, Bülent (ed.) et al., Numerical mathematics and advanced applications – ENUMATH 2015. Selected papers based on the presentations at the European conference, Ankara, Turkey, September 14–18, 2015. Cham: Springer (ISBN 978-3-319-39927-0/hbk; 978-3-319-39929-4/ebook). Lecture Notes in Computational Science and Engineering 112, 53-62 (2016).
Summary: Recently in [SIAM J. Numer. Anal. 52, No. 5, 2335–2355 (2014; Zbl 1408.65062)], the author showed for which parameter range the compact third order WENO reconstruction procedure introduced in [D. Levy et al., SIAM J. Sci. Comput. 22, No. 2, 656–672 (2000; Zbl 0967.65089)] reaches the optimal order of accuracy (\(h^{3}\) in the smooth case and \(h^{2}\) near discontinuities). This is the case for the parameter choice \(\varepsilon = Kh^q\) in the weight design with \(q\leq 3\) and \(pq\geq 2\), where \(p\geq 1\) is the exponent used in the computation of the weights in the WENO scheme. While these theoretical results for the convergence rates of the WENO reconstruction procedure could also be validated in the numerical tests, the application within the semi-discrete central scheme of A. Kurganov and D. Levy [ibid. 22, No. 4, 1461–1488 (2000; Zbl 0979.65077)] together with a third order TVD-Runge-Kutta scheme for the time integration did not yield a third order accurate scheme in total for \(q > 2\). The aim of this follow-up paper is to explain this observation with further analytical and numerical results.
For the entire collection see [Zbl 1358.65003].

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI

References:

[1] F. Aràndiga, A. Baeza, A.M. Belda, P. Mulet, Analysis of WENO schemes for full and global accuracy. SIAM J. Numer. Anal. 49 (2), 893–915 (2011) · Zbl 1233.65051 · doi:10.1137/100791579
[2] R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227 (6), 3191–3211 (2008) · Zbl 1136.65076 · doi:10.1016/j.jcp.2007.11.038
[3] S. Bryson, D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations. Appl. Numer. Math. 56 (9), 1211–1224 (2006) · Zbl 1096.65081 · doi:10.1016/j.apnum.2006.03.005
[4] M. Castro, B. Costa, W.S. Don, High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230 (5), 1766–1792 (2011) · Zbl 1211.65108 · doi:10.1016/j.jcp.2010.11.028
[5] I. Cravero, M. Semplice, On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67 (3), 1219–1246 (2016) · Zbl 1343.65116 · doi:10.1007/s10915-015-0123-3
[6] H. Feng, F. Hu, R. Wang, A new mapped weighted essentially non-oscillatory scheme. J. Sci. Comput. 51 (2), 449–473 (2012) · Zbl 1253.65124 · doi:10.1007/s10915-011-9518-y
[7] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[8] Y. Ha, C.H. Kim, Y.J. Lee, J. Yoon, An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232 (1), 68–86 (2013) · Zbl 1291.65264 · doi:10.1016/j.jcp.2012.06.016
[9] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (1), 231–303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[10] A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207 (2), 542–567 (2005) · Zbl 1072.65114 · doi:10.1016/j.jcp.2005.01.023
[11] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[12] O. Kolb, On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52 (5), 2335–2355 (2014) · Zbl 1408.65062 · doi:10.1137/130947568
[13] A. Kurganov, D. Levy, A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22 (4), 1461–1488 (2000) · Zbl 0979.65077 · doi:10.1137/S1064827599360236
[14] D. Levy, G. Puppo, G. Russo, Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2), 656–672 (2000) · Zbl 0967.65089 · doi:10.1137/S1064827599359461
[15] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1), 200–212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[16] S. Serna, A. Marquina, Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194 (2), 632–658 (2004) · Zbl 1044.65071 · doi:10.1016/j.jcp.2003.09.017
[17] N.K. Yamaleev, M.H. Carpenter, A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228 (11), 4248–4272 (2009) · Zbl 1273.65113 · doi:10.1016/j.jcp.2009.03.002
[18] N.K. Yamaleev, M.H. Carpenter, Third-order energy stable WENO scheme. J. Comput. Phys. 228 (8), 3025–3047 (2009) · Zbl 1165.65381 · doi:10.1016/j.jcp.2009.01.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.