×

Discontinuous backward doubly stochastic differential equations with Poisson jumps. (English) Zbl 1367.60074

Summary: This paper is devoted to solving a real valued backward doubly stochastic differential equation with jumps where the time horizon may be finite or infinite. Coupling a linear growth condition and left continuity on the generator, we prove existence of a minimal solution.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H05 Stochastic integrals
60G44 Martingales with continuous parameter
Full Text: DOI

References:

[1] Duan, P., Ren, Y.: BSDEs on finite and infinite time horizon with discontinuous coefficients. Bull. Korean Math. Soc. 50, 1079-1086 (2013) · Zbl 1274.60178 · doi:10.4134/BKMS.2013.50.4.1079
[2] Fan, S., Jiang, L., Tian, D.: One dimensional BSDEs with finite and infinite time horizon. Stoch. Process. Appl. 121, 427-440 (2011) · Zbl 1219.60059 · doi:10.1016/j.spa.2010.11.008
[3] Faye, I., Sow, A.B.: Backward doubly stochastic differential equation driven by Lévy process: a comparison theorem. Afrika Matematika 25, 869-880 (2014) · Zbl 1305.60043 · doi:10.1007/s13370-013-0156-4
[4] Faye, I., Sow, A.B.: Finite and infinite time interval of BDSDEs driven by Lévy processes. Afr. Diaspora J. Math. 13, 108-126 (2012) · Zbl 1401.60104
[5] Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558-602 (2000) · Zbl 1044.60045 · doi:10.1214/aop/1019160253
[6] Lin, Q.: Backward doubly stochastic differential equations with weak assumptions on the coefficients. Appl. Math. Comput. 217, 9322-9333 (2011) · Zbl 1220.60035
[7] Lepeltier, J.P., San Martin, J.: Backward stochastic differential equations with continuous coefficients. Stat. Probab. Lett. 32, 425-430 (1997) · Zbl 0904.60042 · doi:10.1016/S0167-7152(96)00103-4
[8] Mao, X.: Adapted solution of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Process. Appl. 58, 281-292 (1995) · Zbl 0835.60049 · doi:10.1016/0304-4149(95)00024-2
[9] Pardoux, É., Peng, S.: Adapted solutions of backward stochastic differential equations. Syst. Control Lett. 14, 55-61 (1990) · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[10] Pardoux, É., Peng, S.: Backward doubly stochastic differential equations and semilinear PDEs. Probab. Theory Relat. Fields 98, 209-227 (1994) · Zbl 0792.60050 · doi:10.1007/BF01192514
[11] Shi, Y., Gu, Y., Liu, K.: Comparison theorems of backward doubly stochastic differential equations and applications. Stoch. Anal. Appl. 23, 97-110 (2005) · Zbl 1067.60046 · doi:10.1081/SAP-200044444
[12] Sow, A.B.: BSDE with jumps and non Lipschitz coefficients: application to large deviations. Br. J. Probab. Stat. 28, 96-108 (2014) · Zbl 1291.60123 · doi:10.1214/12-BJPS197
[13] Sun, X., Lu, Y.: The property for solutions of the multidimensional backward doubly stochastic differential equations with jumps (in Chinese). Chin. J. Probab. Stat. 24, 73-82 (2008) · Zbl 1174.60388
[14] Wang, Y., Wang, X.: Adapted solutions of backward stochastic differential equations with non Lipschitz coefficients equations. Chin. J. Appl. Probab. Stat. 19, 245-251 (2003) · Zbl 1153.60358
[15] Wang, Y., Huang, Z.: Backward stochastic differential equations with non Lipschitz coefficients equations. Stat. Probab. Lett. 79, 1438-1443 (2009) · Zbl 1172.60322 · doi:10.1016/j.spl.2009.03.003
[16] Zhu, Q., Shi, Y.: Backward doubly stochastic differential equations with jumps and stochastic partial differential-integral equations. Chin. Ann. Math. Ser. B 33, 127-142 (2012) · doi:10.1007/s11401-011-0686-8
[17] Zhu, Q., Shi, Y.: A class of backward doubly stochastic differential equations with discontinuous coefficients. Acta Math. Appl. Sin. Engl. Ser. 30, 965-976 (2014) · Zbl 1315.60073 · doi:10.1007/s10255-011-0136-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.