×

Accurate function sinc interpolation and derivative estimations over finite intervals. (English) Zbl 1367.41002

Summary: Function expansion in terms of finite Sinc bases is considered. For finite intervals, we considered proper transformation and weighted barycentric methods. We adjusted the transformation function to comply with the truncation of the expansion. This removes the unbounded behavior of the terminal derivatives and yields accurate results.
Efficient weighted barycentric expansions are presented to improve the accuracies of function and derivative estimations. A new expression for the estimation of the second derivative is derived. The derived expressions are successfully applied to accurately locate the minimum of the solution and solve a singularly-perturbed problem.

MSC:

41A05 Interpolation in approximation theory
41A20 Approximation by rational functions

Software:

Sinc-Pack
Full Text: DOI

References:

[1] Lund, J.; Bowers, K. L., Sinc Methods for Quadrature and Differential Equations (1992), SIAM: SIAM Philadelphia · Zbl 0753.65081
[2] Stenger, F., Numerical Methods Based on Sinc and Analytic Functions (1993), Springer: Springer New York · Zbl 0803.65141
[3] Stenger, F., Summary of Sinc numerical methods, J. Comput. Appl. Math., 121, 379-420 (2000) · Zbl 0964.65010
[4] Stenger, F., Handbook of Sinc Numerical Methods (2010), CRC Press: CRC Press Boca Raton, FL
[5] Mohsen, A.; El-Gamel, M., On the numerical solution of linear and nonlinear Volterra integral and integro-differential equations, Appl. Math. Comput., 271, 3330-3337 (2010) · Zbl 1204.65158
[6] El-Gamel, M.; Mohsen, A.; Abdel Mohsen, A., Sinc-Galerkin method for solving Biharmonic problems, Appl. Math. Comput., 247, 386-396 (2014) · Zbl 1338.65253
[7] Mohsen, A. A.K., Eliminating the unbounded behavior of function derivative expansions in terms of Sinc bases, Appl. Math. Comput., 268, 793-795 (2015) · Zbl 1410.41014
[8] Berrut, J.-P., Barycentric formulae for cardinal (Sinc-) interpolants, Numer. Math., 54, 703-718 (1989), Erratum, 55: 747, 1989 · Zbl 0647.65005
[9] Boyd, J. P., A fast algorithm for Chebyshev, Fourier, and Sinc interpolation onto an irregular grid, J. Comput. Phys., 103, 243-257 (1992) · Zbl 0768.65001
[10] Henrici, P., Barycentric formulas for interpolating trigonometric polynomials and their conjugates, Numer. Math., 33, 225-234 (1979) · Zbl 0442.65129
[11] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107, 315-331 (2007) · Zbl 1221.41002
[12] Helmes, H. D.; Thomas, J. B., Truncation error of sampling-theorem expansions, Proc. IRE, 50, 179-184 (1962)
[13] Jagerman, D., Bounds for the truncation error of the sampling expansion, SIAM J. Appl. Math., 14, 714-723 (1966) · Zbl 0221.65200
[14] Trynin, A. Yu.; Sklyarov, V. P., Error of Sinc approximation of analytic functions on an interval, Sampl. Theory Signal Image Process., 7, 263-270 (2008) · Zbl 1182.65020
[15] Trynin, A. Yu., A criterion for the uniform convergence of Sinc-approximations on a segment, Russian Math., 52, 58-69 (2008) · Zbl 1210.42003
[16] Berrut, J.-P., A formula for the error of finite Sinc-interpolation over a finite interval, Numer. Algorithms, 45, 369-374 (2007) · Zbl 1123.41001
[17] Berrut, J.-P., A formula for the error of finite Sinc-interpolation with an even number of nodes, Numer. Algorithms, 56, 143-157 (2011) · Zbl 1213.41001
[18] Berrut, J.-P., First applications of a formula for the error of finite Sinc-interpolation, Numer. Math., 112, 341-361 (2009) · Zbl 1179.41033
[19] Butzer, P. L.; Splettstroesser, W., A sampling theorem for duration-limited functions with error estimates, Inf. Control, 34, 55-65 (1977) · Zbl 0363.94009
[20] Brown, J. L., On the error in reconstructiong a non-band-limited function by means of the bandpass sampling theory, J. Math. Anal. Appl., 18, 75-84 (1967), Erratum, 21: 699, 1968 · Zbl 0167.47804
[21] Butzer, P. L.; Stens, R. L., Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Rev., 34, 40-53 (1992) · Zbl 0746.94002
[22] Butzer, P. L.; Schmeisser, G.; Stens, R. L., Shannon’s sampling theory for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivatives-the aliasing error involved by their extensions from bandlimited to non-bandlimited signals, Entropy, 14 (2012), 2192-2126 · Zbl 1314.94034
[23] Sugihara, M.; Matsuo, T., Recent developments of the Sinc numerical methods, J. Comput. Appl. Math., 164-165, 673-689 (2004) · Zbl 1038.65071
[24] Berrut, J.-P.; Klein, G., Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259, 95-107 (2014) · Zbl 1291.65036
[25] Hormann, K., Barycentric interpolation, (Fasshauser, G. E.; Schumaker, L. L., Approximation Theory XIV. Approximation Theory XIV, Springer Proc. Math. & Statistics, vol. 83 (2014), Springer: Springer Berlin), 197-218 · Zbl 1323.41004
[26] de Camargo, A. P., On the numerical stability of Floater-Hormann’s rational interpolant, Numer. Algorithms, 72, 131-152 (2016) · Zbl 1382.65036
[27] Klein, G., An extension of the Floater-Hormann family of barycentric rational interpolants, Math. Comp., 82, 2273-2292 (2013) · Zbl 1275.65009
[28] Stenger, F., Polynomial function and derivative approximation of Sinc data, J. Complexity, 25, 292-302 (2009) · Zbl 1180.65028
[29] Stenger, F.; El-Sharkawy, H.; Baumann, G., The Lebesgue constant for Sinc approximations, (Zayed, A. I.; Schmeisser, G., New Prespectives on Approximation and Sampling Theory (2014), Birkhaeser: Birkhaeser Heidelberg), 319-335 · Zbl 1314.42002
[30] Bos, L.; Marchi, S. D.; Hormann, K.; Klein, G., On the Lebesgue constant of barycentric rational interpolation at equidistant nodes, Numer. Math., 121, 461-471 (2012) · Zbl 1252.41003
[31] Boyd, J. P., Sum-accelerated pseudospectral methods: finite differences and sech-weighted differences, Comput. Methods Appl. Mech. Engrg., 116, 1-11 (1994) · Zbl 0845.65041
[32] Weiderman, J. A.C.; Reddy, S. C., A MATLAB differentiation matrix suite, ACM Trans. Math. Softw., 26, 465-519 (2000)
[33] Baltensperger, R.; Trummer, M. R., Spectral differencing with a twist, SIAM J. Sci. Comput., 24, 1465-1487 (2003) · Zbl 1034.65016
[34] Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 501-517 (2004) · Zbl 1061.65006
[35] Wu, X.; Li, C.; Kong, W., A Sinc-collocation method with boundary treatment for two-dimensional elliptic boundary value problems, J. Comput. Appl. Math., 196, 58-69 (2006) · Zbl 1096.65118
[36] Du, L.-l.; Wu, X.; Kong, W., Rational Sinc method based on interpolation of highest derivatives, Commun. Appl. Math. Comput., 25, 148-164 (2011) · Zbl 1265.41002
[37] Du, L.; Wu, X.; Kong, W., Boundary reduction technique and rational Sinc domain decomposition method, Eng. Anal. Bound. Elem., 36, 1353-1360 (2012) · Zbl 1352.65563
[38] Stenger, F.; Youssef, M.; Niebsch, J., Improved approximation via use of transformations, (Chen, X.; Zayed, A., Multiscale Signal Analysis (2013), Springer: Springer Berlin), (Chapter 2) · Zbl 1316.41004
[39] Adcock, B.; Richardson, M., New exponential variable transform methods for functions with endpoint singularities, SIAM J. Numer. Anal., 52, 1887-1912 (2014) · Zbl 1311.41001
[40] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2004), Springer: Springer New York
[41] Tang, T.; Trummer, M. R., Boundary layer resolving pseudospectral methods for singular perturbed problems, SIAM J. Sci. Comput., 17, 430-438 (1996) · Zbl 0851.65058
[42] Qian, L. W., On the regularized Whittaker-Kotel’nikov-Shannon sampling formula, Proc. Amer. Math. Soc., 131, 1169-1176 (2003) · Zbl 1018.94004
[43] Qian, L. W.; Creamer, D. B., A modification of the sampling series with a Gaussian multiplier, Sampl. Theory Signal Image Process., 5, 307-325 (2006)
[44] Qian, L. W.; Ogawa, H., Modified Sinc kernels for the localized sampling series, Sampl. Theory Signal Image Process., 4, 121-139 (2005) · Zbl 1137.94330
[45] Schmeisser, G.; Stenger, F., Sinc approximation with a Gaussian multiplier, Sampl. Theory Signal Image Process., 6, 199-221 (2007) · Zbl 1156.94326
[46] Tanaka, K.; Sugihara, M.; Murota, K., Complex-analytic approach to Sinc-Gauss sampling formula, Japan J. Indust. Appl. Math., 25, 209-231 (2008) · Zbl 1152.65123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.