×

Asymptotic stability of the rarefaction wave for the compressible quantum Navier-Stokes-Poisson equations. (English) Zbl 1367.35124

Summary: In this study, we consider the large time behavior of the solution to the one-dimensional isentropic compressible quantum Navier-Stokes-Poisson equations. The system describes a compressible particle fluid under quantum effects with the potential function of the self-consistent electric field. We show that if the initial data are close to a constant state with asymptotic values at far fields selected such that the Riemann problem on the corresponding Euler system admits a rarefaction wave with a strength that is not necessarily small, then the solution exists for all time and it tends to the rarefaction wave as \(t \rightarrow + \infty\). The proof is based on the energy method by considering the effect of the self-consistent electric field and quantum potential in the viscous compressible fluid. In addition, we compare the quantum compressible Navier-Stokes-Poisson equations and the corresponding compressible Navier-Stokes-Poisson equations based on the large-time behavior of these two classes of models.

MSC:

35Q35 PDEs in connection with fluid mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
35B40 Asymptotic behavior of solutions to PDEs
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Antonelli, P.; Marcati, P., On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287, 657-686 (2009) · Zbl 1177.82127
[2] Brull, S.; Méhats, F., Derivation of viscous correction terms for the isothermal quantum Euler model, ZAMM Z. Angew. Math. Mech., 90, 219-230 (2010) · Zbl 1355.82018
[3] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1957), Dover Publications Inc.: Dover Publications Inc. New York, NY, USA · Zbl 0079.23901
[4] Chen, L.; Dreher, M., The viscous model of quantum hydrodynamics in several dimensions, Math. Models Methods Appl. Sci., 17, 1065-1093 (2007) · Zbl 1144.35012
[5] Dong, J., A note on barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal., 73, 854-856 (2010) · Zbl 1193.35128
[6] Dreher, M., The transient equations of viscous quantum hydrodynamics, Math. Methods Appl. Sci., 31, 391-414 (2008) · Zbl 1142.35070
[7] Duan, R.-J.; Liu, S.-Q., Stability of rarefaction waves of the Navier-Stokes-Poisson system, J. Differential Equations, 258, 2495-2530 (2015) · Zbl 1309.35074
[8] Duan, R.-J.; Liu, S.-Q.; Yin, H.-Y.; Zhu, C.-J., Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59, 67-84 (2016) · Zbl 1362.35038
[9] Gamba, I. M.; Gualdani, M.; Zhang, P., On the blowing up of solutions to the quantum hydrodynamic equations in a bounded domain, Monatsh. Math., 157, 37-54 (2007) · Zbl 1173.35106
[10] Gamba, I.; Jüngel, A.; Vasseur, A., Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations, J. Differential Equations, 247, 3117-3135 (2009) · Zbl 1181.35209
[11] Gasser, I.; Markowich, P.; Schmidt, D.; Unterreiter, A., Macroscopic theory of charged quantum fluids, (Mathematical Problems in Semiconductor Physics. Mathematical Problems in Semiconductor Physics, Pitman Res. Notes Math. Ser., vol. 340 (1995), Longman: Longman Harlow), 42-75 · Zbl 0882.76107
[12] Gualdani, M.; Jüngel, A., Analysis of the viscous quantum hydrodynamic equations for semiconductor, European J. Appl. Math., 15, 577-595 (2004) · Zbl 1076.82049
[13] Gualdani, M.; Jüngel, A.; Toscani, G., Exponent decay in time of solutions of the viscous quantum hydrodynamic equations, Appl. Math. Lett., 16, 1273-1278 (2003) · Zbl 1042.82047
[14] Huang, F.-M.; Li, J.; Matsumara, A., Asymptotic stability of combination of viscous contact wave with rarefaction waves for one dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197, 89-116 (2010) · Zbl 1273.76259
[15] Huang, F.; Li, H.-L.; Matsumura, A., Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors, J. Differential Equations, 225, 1-25 (2006) · Zbl 1160.76444
[16] Huang, F.-M.; Li, M.-J.; Wang, Y., Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 44, 1742-1759 (2012) · Zbl 1247.35093
[17] Huang, F.-M.; Xin, Z-P.; Yang, T., Contact discontinuity with general perturbations for gas motions, Adv. Math., 219, 1246-1297 (2008) · Zbl 1155.35068
[18] Jiu, Q.-S.; Wang, Y.; Xin, Z.-P., Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity, SIAM J. Math. Anal., 45, 3194-3228 (2013) · Zbl 1293.35170
[19] Jüngel, A., Transport Equations for Semiconductors, Lecture Notes in Phys., vol. 773 (2009), Springer: Springer Berlin
[20] Jüngel, A., Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 429, 1025-1045 (2010) · Zbl 1228.35083
[21] Jüngel, A.; Li, H.-L., Quantum Euler-Poisson systems: global existence and exponential decay, Quart. Appl. Math., 62, 569-600 (2004) · Zbl 1069.35012
[22] Jüngel, A.; Matthes, D., Derivation of the isothermal quantum hydrodynamic equations using entropy minimization, ZAMM Z. Angew. Math. Mech., 85, 806-814 (2005) · Zbl 1077.76074
[23] Jüngel, A.; Matthes, D.; Milišić, J.-P., Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67, 46-68 (2006) · Zbl 1121.35117
[24] Jüngel, A.; Milišić, J.-P., Physical number viscosity for quantum hydrodynamics, Commun. Math. Sci., 5, 447-471 (2007) · Zbl 1130.76088
[25] Li, H.-L.; Marcati, P., Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors, Comm. Math. Phys., 245, 215-247 (2004) · Zbl 1075.82019
[26] Li, H.-L.; Zhang, G.; Zhang, K., Algebraic time decay for the bipolar quantum hydrodynamic model, Math. Models Methods Appl. Sci., 18, 859-881 (2008) · Zbl 1151.82423
[27] Liu, T.-P.; Xin, Z.-P., Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118, 451-465 (1988) · Zbl 0682.35087
[28] Liu, S.-. Q.; Yin, H.-Y.; Zhu, C.-J., Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary, Commun. Math. Sci., 14, 1859-1887 (2016) · Zbl 1356.35180
[29] Matsumura, A.; Nishihara, K., On the stability of travelling wave solution of a one-dimensional model system for compressible viscous gas, Jpn. J. Appl. Math., 2, 17-25 (1985) · Zbl 0602.76080
[30] Matsumura, A.; Nishihara, K., Asymptotics towards the rarefaction waves of the solutions of a one-dimensional model system of compressible viscous gas, Jpn. J. Appl. Math., 3, 1-13 (1986) · Zbl 0612.76086
[31] Matsumura, A.; Nishihara, K., Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144, 325-335 (1992) · Zbl 0745.76069
[32] Nishibata, S.; Suzuki, M., Initial boundary value problems for a quantum hydrodynamic model of semiconductors: asymptotic behaviors and classical limits, J. Differential Equations, 244, 836-874 (2008) · Zbl 1139.82042
[33] Smoller, J., Shock Waves and Reaction-Diffusion Equation (1983), Spring Verlag: Spring Verlag New York, Berlin · Zbl 0508.35002
[34] Zhang, G.; Li, H.-L.; Zhang, K., Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors, J. Differential Equations, 245, 1433-1453 (2008) · Zbl 1154.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.