×

Distance between the normalized Laplacian spectra of two graphs. (English) Zbl 1367.05126

Summary: Let \(G = (V, E)\) be a simple graph of order \(n\). The normalized Laplacian eigenvalues of graph \(G\) are denoted by \(\rho_1(G) \geq \rho_2(G) \geq \cdots \geq \rho_{n - 1}(G) \geq \rho_n(G) = 0\). Also let \(G\) and \(G^\prime\) be two nonisomorphic graphs on \(n\) vertices. Define the distance between the normalized Laplacian spectra of \(G\) and \(G^\prime\) as \[ \sigma_N(G, G^\prime) = \mathop{\sum}\limits_{i = 1}^n | \rho_i(G) - \rho_i(G^\prime) |^p,\quad p \geq 1 . \] Define the cospectrality of \(G\) by \[ c s^N(G) = \min \{\sigma_N(G, G^\prime) : G^\prime \text{not isomorphic to}\, G \} . \] Let \[ c s_n^N = \max \{c s^N(G) : G \text{ a graph on }\, n \text{ vertices} \} . \] In this paper, we give an upper bound on \(c s^N(G)\) in terms of the graph parameters. Moreover, we obtain an exact value of \(c s_n^N\). An upper bound on the distance between the normalized Laplacian spectra of two graphs has been presented in terms of Randić energy. As an application, we determine the class of graphs, which are lying closer to the complete bipartite graph than to the complete graph regarding the distance of normalized Laplacian spectra.

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI

References:

[1] Abdollahi, A.; Janbaz, S.; Oboudi, M. R., Distance between spectra of graphs, Linear Algebra Appl., 466, 401-408 (2015) · Zbl 1303.05110
[2] Abdollahi, A.; Oboudi, M. R., Cospectrality of graphs, Linear Algebra Appl., 451, 169-181 (2014) · Zbl 1288.05150
[3] Chung, F. K., Spectral Graph Theory (1997), American Mathematical Soc. · Zbl 0867.05046
[4] Das, K. C.; Güngör, A. D.; Bozkurt, Ş. B., On the normalized Laplacian eigenvalues of graphs, Ars Combin., 118, 143-154 (2015) · Zbl 1349.05205
[5] Das, K. C.; Sorgun, S., On Randić energy of graphs, MATCH Commun. Math. Comput. Chem., 72, 227-238 (2014) · Zbl 1464.05232
[6] Das, K. C.; Sorgun, S.; Gutman, I., On Randić energy, MATCH Commun. Math. Comput. Chem., 73, 81-92 (2015) · Zbl 1464.05233
[7] Das, K. C.; Sun, S., Normalized Laplacian eigenvalues and energy of trees, Taiwanese J. Math., 20, 3, 491-507 (2016) · Zbl 1357.05077
[8] Das, K. C.; Sun, S., Extremal graph on normalized Laplacian spectral radius and energy, Electron. J. Linear Algebra, 31, 237-254 (2016)
[9] Gutman, I.; Furtula, B.; Bozkurt, Ş. B., On Randić energy, Linear Algebra Appl., 442, 50-57 (2014) · Zbl 1282.05118
[10] Hoffman, A. J.; Wielandt, H. W., The variation of the spectrum of a normal matrix, Duke Math. J., 20, 37-39 (1953) · Zbl 0051.00903
[11] Jovanović, I.; Stanić, Z., Spectral distances of graphs, Linear Algebra Appl., 436, 1425-1435 (2012) · Zbl 1236.05123
[12] Li, J.; Guo, J. M.; Shiu, W. C., Bounds on normalized Laplacian eigenvalues of graphs, J. Inequal. Appl., 316 (2014) · Zbl 1332.05090
[13] Li, J.; Guo, J.-M.; Shiu, W. C.; Chang, A., Six classes of trees with largest normalized algebraic connectivity, Linear Algebra Appl., 452, 318-327 (2014) · Zbl 1290.05105
[14] Li, J.; Guo, J.-M.; Shiu, W. C.; Chang, A., An edge-separating theorem on the second smallest normalized Laplacian eigenvalue of a graph and its applications, Discrete Appl. Math., 171, 104-115 (2014) · Zbl 1288.05160
[15] Mitrinović, D. S., Analytic Inequalities (1970), Springer-Verlag: Springer-Verlag New York · Zbl 0199.38101
[16] Stevanivić, D., Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl., 423, 172-181 (2007) · Zbl 1290.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.