×

The transovarial transmission in the dynamics of dengue infection: epidemiological implications and thresholds. (English) Zbl 1366.92132

Summary: The anthropophilic and peridomestic female mosquito Aedes aegypti bites humans to suck blood to maturate fertilized eggs, during which dengue virus can be spread between mosquito and human populations. Besides this route of transmission, there is a possibility of dengue virus being passed directly to offspring through transovarial (or vertical) transmission. The effects of both horizontal and transovarial transmission routes on the dengue virus transmission are assessed by mathematical modeling. From the model, the reproduction number is obtained and the contribution of transovarial transmission is evaluated for different levels of horizontal transmission. Notably, the transovarial transmission plays an important role in dengue spread when the reproduction number is near one. Another threshold parameter arises, which is the product of the fractions of the susceptible populations of humans and mosquitoes. Interestingly, these two threshold parameters can be obtained from three different approaches: the spectral radius of the next generation matrix, the Routh-Hurwitz criteria and \(\mathbf{M}\)-matrix theory.

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] (Monath, T. P., The Arboviruses: Epidemiology and Ecology, V (1989), CRC Press: CRC Press Boca Raton, Florida)
[2] Yang, H. M.; Boldrini, J. L.; Fassoni, A. C.; Lima, K. K.B.; Freitas, L. F.S.; Gomez, M. C.; Andrade, V. R.; Freitas, A. R.R., Fitting the incidence data from the city of campinas, brazil, based on dengue transmission modellings considering time-dependent entomological parameters, PlosOne March, 24, 1-41 (2016)
[3] Günther, J.; Noz, J. P.M.-M.; Pérez-Ishiwara, D. G.; Salas-Benito, J., Evidence of vertical transmission of dengue virus in two endemic localities in the state of oaxaca, Mexico, Intervirology, 50, 347-352 (2007)
[4] Hull, B.; Tikasingh, E.; de Souza, M.; Martinez, R., Natural transovarial transmission of dengue 4 virus in aedes aegypti in trinidad, Am. J. Trop. Med. Hyg., 33, 1248-1250 (1984)
[5] Joshi, V.; Singhi, M.; Chaudhary, R. C., Transovarial transmission of dengue 3 virus by aedes aegypti, Trans. R. Soc. Trop. Med. Hyg., 90, 643-644 (1996)
[6] Joshi, V.; Mourya, D. T.; Sharma, R. C., Persistence of dengue-3 virus through transovarial transmission passage in successive generations of aedes aegyptimosquitoes, Am. J. Trop. Med. Hyg., 67, 2, 158-161 (2002)
[7] Martins, V. E.P.; Alencar, C. H.; Kamimura, M. T.; Araújo, F. M.C.; De Simone, S. G.; Dutra, R. F.; Guedes, M. I.F., Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in aedes aegypti and aedes albopictus in fortaleza, ceará, Brazil, Plosone, 7, 7, e41386 (2012)
[8] Rosen, L.; Shroyer, D. A.; Tesh, R. B.; Freiery, J. E.; Lien, J. C., Transovarial transmission of dengue viruses by mosquitoes: aedes albopictus and aedes aegypti, Am. J. Trop. Med. Hyg., 32, 5, 1108-1119 (1983)
[9] Shroyer, D. A., Vertical maintenance of dengue-1 virus in sequential generation of aedes albopictus, J. Am. Mosq. Control Assoc., 6, 2, 312-314 (1990)
[10] van den Driessche, P.; Watmough, J., Reproduction number and sub-threshold endemic equilibria for compartimental models of disease transmission, Math. Biosci., 180, 1-2, 29-48 (2002) · Zbl 1015.92036
[11] Leite, M. B.F.; Bassanezi, R. C.; Yang, H. M., The basic reproduction ratio for a model of directly transmitted infections considering the virus charge and the immunological response, IMA J. Math. Appl. Med. Biol., 17, 1, 15-31 (2000) · Zbl 0963.92035
[12] Raimundo, S. M.; Massad, E.; Yang, H. M., Modelling congenital transmission of chagas’ disease, BioSystems, 99, 215-222 (2010)
[13] Yang, H. M., Mathematical modeling of solid cancer growth with angiogenesis, Theoret. Biol. Med. Model., 9 (2012)
[14] Anderson, R. M.; May, R. M., Infectious Diseases of Human. Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford, New York, Tokyo
[15] Yang, H. M.; Silveira, A. S.B., The loss of immunity in directly transmitted infections modelling: effects on the epidemiological parameters, B. Math. Biol., 60, 2, 355-372 (1998) · Zbl 1053.92512
[16] Yang, H. M.; Raimundo, S. M., Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis, Theoret. Biol. Med. Model., 7 (2010)
[17] Yang, H. M.; Macoris, M. L.G.; Galvani, K. C.; Andrighetti, M. T.M., Assessing the effects of temperature on the population of aedes aegypti, the vector of dengue, Epidemiol. Infect., 137, 1188-1202 (2009)
[18] Yang, H. M.; Macoris, M. L.G.; Galvani, K. C.; Andrighetti, M. T.M., Follow up estimation of aedes aegyptientomological parameters and mathematical modellings, BioSystems, 103, 360-371 (2011)
[19] Yang, H. M., Assessing the influence of quiescence eggs on the dynamics of mosquito aedes aegypti, Appl. Math., 5, 17, 2696-2711 (2014)
[20] Esteva, L.; Yang, H. M., Mathematical model to assess the control of aedes aegypti mosquitoes by the sterile insect technique, Math. Biosci., 198, 132-147 (2000) · Zbl 1090.92048
[21] Roberts, M. G.; Heesterbeek, J. P.A., A new method to estimate the effort required to control an infectious disease, Proc. Royal Soc. Lond., Ser. B, 270, 1359-1364 (2003)
[22] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 873-885 (2010)
[23] Diekmann, O.; Heesterbeek, J. A.P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (2000), Wiley: Wiley New York · Zbl 0997.92505
[24] Yang, H. M.; Yang, A. C.; Santos, K. S.; Ao, C. E.G.; Castro, F. F.M., The assessment of the arising of food allergy among antiacid users using mathematical model, Appl. Math. (Irvine), 3, 293-307 (2012)
[25] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes: The Arts of Scientifc Computing (FORTRAN Version) (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0698.65001
[26] Yang, H. M., The basic reproduction number obtained from jacobian and next generation matrices - a case study of dengue transmission modelling, BioSystems, 126, 52-75 (2014)
[27] Yang, H. M.; Greenhalgh, D., Proof of conjecture in: the basic reproduction number obtained from Jacobian and next generation matrices - a case study of dengue transmission modelling, Appl. Math. Comput., 265, 103-107 (2015) · Zbl 1410.92145
[28] Williams, C. B., The use of logarithms in the interpretation of certain entomological problems, Ann. Appl. Biol., 24, 2, 404-414 (1937)
[29] Edelstein-Keshet, L., Mathematical models in biology, Birkhäuser Mathematics Series (1988), McGraw-Hill Inc.: McGraw-Hill Inc. New York · Zbl 0674.92001
[30] Berman, A.; Plemmons, R. J., Nonnegtive Matrices in the Mathematical Sciences (1979), Academic Press: Academic Press New York · Zbl 0484.15016
[31] Raimundo, S. M.; Yang, H. M.; Venturino, E., Theoretical assessment of the relative incidence of sensitive and resistant tuberculosis epidemic in presence of drug treatment, Math. Biosc. Eng., 11, 4, 971-993 (2014) · Zbl 1327.92026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.