×

New asymptotic anti-de Sitter solution with a timelike extra dimension in 5D relativity. (English) Zbl 1366.83091

Summary: In 5D relativity, the usual 4D cosmological constant is determined by the extra dimension. If the extra dimension is spacelike, one can get a positive cosmological constant \(\Lambda\) and a 4D de Sitter (dS) space. In this paper we present that, if the extra dimension is timelike oppositely, the negative \(\Lambda\) will be emerged and the induced 4D space will be an asymptotic Anti-de Sitter (AdS). Under the minimum assumption, we solve the Kaluza-Klein equation \(R_{AB}=0\) in a canonical system and obtain the AdS solution in a general case. The result shows that an AdS space is induced naturally from a Kaluza-Klein manifold on a hypersurface (brane). The Lagrangian of test particle indicates the equation of motion can be geodesics if the 4D metric is independent of extra dimension. The causality is well respected because it is appropriately defined by a null higher dimensional interval. In this 5D relativity, the holographic principle can be used safely because the brane is asymptotic Euclidean AdS in the bulk. We also explore some possible holographic duality implications about the field/operator correspondence and the two-points correlation functions.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories

References:

[1] Kaluza, T., Sitz. Preuss. Akad. Wiss., 33, 966 (1921)
[2] Klein, O., Z. Phys., 37, 895 (1926) · JFM 52.0970.09
[3] Wesson, P., Internat. J. Modern Phys. D., 24, 1530001 (2015), arXiv:1412.6136 [gr-qc]
[4] Overduin, J.; Wesson, P., Phys. Rep., 283, 303 (1997), arXiv:gr-qc/9805018
[5] Wesson, P., Space-Time-Matter: Modern Kaluza-Klein Theory (1999), World Scientific: World Scientific Singapore · Zbl 0966.53002
[6] Wesson, P., Five-Dimensional Relativity (2006), World Scientific: World Scientific Singapore
[7] Kalligas, D.; Wesson, P.; Everitt, C., Astrophys. J., 439, 548 (1995)
[8] Liu, H.; Overduin, J., Astrophys. J., 538, 386 (2000), arXiv:gr-qc/0003034
[9] Liu, H.; Mashhoon, B., Ann. Phys., Lpz., 4, 565 (1995) · Zbl 0835.53099
[10] Liu, H.; Wesson, P., Astrophys. J., 562, 1 (2001), arXiv:gr-qc/0107093
[11] Liu, M.; Liu, H.; Gui, Y., Classical Quantum Gravity, 25, 105001 (2008), arXiv:0806.2716 [gr-qc]
[12] Liu, M.; Liu, H., Phys. Lett. B, 661, 365 (2008), arXiv:0811.0655 [gr-qc]
[13] Liu, M.; Gui, Y.; Liu, H., Phys. Rev. D, 78, 124003 (2008), arXiv:0812.0864 [gr-qc]
[14] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. Lett. B, 429, 263 (1998), arXiv:hep-ph/9803315 · Zbl 1355.81103
[15] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. Lett. B, 436, 257 (1998), arXiv:hep-ph/9804398
[16] Randall, L.; Sundrum, R., Phys. Rev. Lett., 83, 3370 (1999), arXiv:hep-ph/9905221
[17] Randall, L.; Sundrum, R., Phys. Rev. Lett., 83, 4690 (1999), arXiv:hep-th/9906064
[18] Maartens, R.; Koyama, K., Living Rev. Relativ., 13, 5 (2010), arXiv:1004.3962 [hep-th]
[20] Shtanov, Y.; Sahni, V., Phys. Lett. B, 557, 1 (2003), arXiv:gr-qc/0208047 · Zbl 1009.83068
[21] Chaichian, M.; Kobakhidze, A., Phys. Lett. B, 488, 117 (2000), arXiv:hep-th/0003269 · Zbl 0961.83061
[22] Berezhiani, A. K.Z.; Chaichian, M.; Yu, Z., Phys. Lett. B, 517, 387 (2001), arXiv:hep-th/0102207 · Zbl 0971.83072
[23] Shtanov, Y., Phys. Lett. B, 541, 177 (2002), arXiv:hep-ph/0108153 · Zbl 0997.83077
[25] Susskind, L., J. Math. Phys., 36, 6377 (1995), arXiv:hep-th/9409089
[26] Maldacena, J., Adv. Theor. Math. Phys., 2, 231 (1998), arXiv:hep-th/9711200
[27] Aharony, O.; Gubser, S.; Maldacena, J.; Ooguri, H.; Oz, Y., Phys. Rep., 323, 183 (2000), arXiv:hep-th/9905111 · Zbl 1368.81009
[28] Witten, E., Adv. Theor. Math. Phys., 2, 253 (1998), arXiv:hep-th/9802150
[29] Gubser, S.; Klebanov, I.; Polyakov, A., Phys. Lett. B, 428, 105 (1998), arXiv:hep-th/9802109 · Zbl 1355.81126
[30] Klebano, I.; Witten, E., Nuclear Phys. B, 556, 89 (1999) · Zbl 0958.81134
[31] Son, D.; Starinets, A., J. High Energy Phys., 0209, 042 (2002), arXiv:hep-th/0205051
[32] Wesson, P., Phys. Lett. B, 722, 1 (2013), arXiv:1301.0333 [physics.gen-ph]
[33] Wesson, P.; Overduin, J., Phys. Lett. B, 750, 302 (2015), arXiv:1510.07178 [gr-qc]
[34] Wesson, P., Modern Phys. Lett. A, 29, 1450168 (2014), arXiv:1411.0046 [gr-qc]
[35] Mashhoon, B.; Liu, H.; Wesson, P., Phys. Lett. B, 331, 305 (1994)
[36] Wesson, P.; Mashhoon, B.; Liu, H.; Sajko, W., Phys. Lett. B, 456, 34 (1999)
[37] Liu, H.; Mashhoon, B., Phys. Lett. A, 272, 26 (2000) · Zbl 1115.83307
[38] Mashhoon, B.; Wesson, P., Classical Quantum Gravity, 21, 3611 (2004), arXiv:gr-qc/0401002 · Zbl 1061.83528
[39] Landau, L.; Lifshitz, E., The Classical Theory of Fields (1975), Pergamon: Pergamon Oxford · Zbl 0043.19803
[40] Horowitz, G. T.; Roberts, M. M., Phys. Rev. D, 78, 126008 (2008), arXiv:0810.1077 [hep-th]
[41] Hartnoll, S.; Herzog, C.; Horowitz, G., Phys. Rev. Lett., 101, 031601 (2008), arXiv:0803.3295 [hep-th]
[42] Hawking, S.; Ellis, G., The Large Scale Structure of Space-Time (1973), Cambridge University Press · Zbl 0265.53054
[43] Liang, C. B.; Zhou, B., Introduction of Differential Geometry and General Relativity (2009), China Science Publishing: China Science Publishing Beijing
[44] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1972), Dover: Dover New York · Zbl 0543.33001
[45] Breitenlohner, P.; Freedman, D., Phys. Lett. B, 115, 197 (1982)
[46] Breitenlohner, P.; Freedman, D., Ann. Physics, 144, 249 (1982) · Zbl 0606.53044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.