×

Geometrical method for thermal instability of nonlinearly charged BTZ black holes. (English) Zbl 1366.83043

Summary: We consider three-dimensional BTZ black holes with three models of nonlinear electrodynamics as source. Calculating heat capacity, we study the stability and phase transitions of these black holes. We show that Maxwell, logarithmic, and exponential theories yield only type one phase transition which is related to the root(s) of heat capacity, whereas, for correction form of nonlinear electrodynamics, heat capacity contains two roots and one divergence point. Next, we use geometrical approach for studying classical thermodynamical behavior of the system. We show that Weinhold and Ruppeiner metrics fail to provide fruitful results and the consequences of the Quevedo approach are not completely matched to the heat capacity results. Then, we employ a new metric for solving this problem. We show that this approach is successful and all divergencies of its Ricci scalar and phase transition points coincide. We also show that there is no phase transition for uncharged BTZ black holes.

MSC:

83C57 Black holes
82B26 Phase transitions (general) in equilibrium statistical mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Astorino, M., Accelerating black hole in 2+1 dimensions and 3+1 black (st)ring, Journal of High Energy Physics, 2011, article 114 (2011) · Zbl 1214.83013
[2] Anabalón, A.; Canfora, F.; Giacomini, A.; Oliva, J., Gribov ambiguity in asymptotically AdS three-dimensional gravity, Physical Review D, 83, 6 (2011) · doi:10.1103/physrevd.83.064023
[3] Hodgkinson, L.; Louko, J., Static, stationary, and inertial Unruh-DeWitt detectors on the BTZ black hole, Physical Review D, 86, 6 (2012) · doi:10.1103/PhysRevD.86.064031
[4] Moon, T.; Myung, Y. S., Rank-\(n\) logarithmic conformal field theory in the BTZ black, Physical Review D, 86 (2012) · doi:10.1103/physrevd.86.124042
[5] Darabi, F.; Atazadeh, K.; Rezaei-Aghdam, A., Generalized \((2 + 1)\) dimensional black hole by Noether symmetry, European Physical Journal C, 73, article 2657 (2013) · doi:10.1140/epjc/s10052-013-2657-6
[6] Frodden, E.; Geiller, M.; Noui, K.; Perez, A., Statistical entropy of a BTZ black hole from loop quantum gravity, Journal of High Energy Physics, 2013, 5, article 139 (2013) · Zbl 1342.83158
[7] Hassaine, M., Rotating AdS black hole stealth solution in \(D = 3\) dimensions, Physical Review D, 89, 4 (2014) · doi:10.1103/PhysRevD.89.044009
[8] Xu, W., Exact black hole formation in three dimensions, Physics Letters B, 738, 472-476 (2014) · doi:10.1016/j.physletb.2014.10.026
[9] Wu, B.; Xu, W., New class of rotating perfect fluid black holes in three dimensional gravity, The European Physical Journal C, 74, article 3007 (2014) · doi:10.1140/epjc/s10052-014-3007-z
[10] Carlip, S., The (2 + 1)-dimensional black hole, Classical and Quantum Gravity, 12, 12, article 2853 (1995) · Zbl 0839.53071 · doi:10.1088/0264-9381/12/12/005
[11] Ashtekar, A.; Wisniewski, J.; Dreyer, O., Isolated horizons in 2+1 gravity, Advances in Theoretical and Mathematical Physics, 6, 507-555 (2002) · Zbl 1031.83009
[12] Sarkar, T.; Sengupta, G.; Tiwari, B. N., On the thermodynamic geometry of BTZ black holes, Journal of High Energy Physics, 2006, 11, article 015 (2006)
[13] Witten, E., Anti-de sitter space, thermal phase transition, and confinement in gauge theories, Advances in Theoretical and Mathematical Physics, 2, 505-532 (1998) · Zbl 1057.81550
[14] Carlip, S., Conformal field theory, \((2 + 1)\)-dimensional gravity and the BTZ black hole, Classical and Quantum Gravity, 22, 12, article R85 (2005) · Zbl 1098.83001 · doi:10.1088/0264-9381/22/12/r01
[15] Witten, E., Three-dimensional gravity revisited
[16] Banados, M.; Teitelboim, C.; Zanelli, J., Black hole in three-dimensional spacetime, Physical Review Letters, 69, 13, 1849-1851 (1992) · Zbl 0968.83514 · doi:10.1103/physrevlett.69.1849
[17] Bañados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J., Geometry of the \(2 + 1\) black hole, Physical Review D: Third Series, 48, 4, 1506-1525 (1993) · doi:10.1103/physrevd.48.1506
[18] Nojiri, S.; Odintsov, S. D., Can quantum-corrected BTZ black hole anti-evaporate?, Modern Physics Letters A, 13, 33, 2695-2704 (1998) · doi:10.1142/s0217732398002862
[19] Emparan, R.; Horowitz, G. T.; Myers, R. C., Exact description of black holes on branes II: comparison with BTZ black holes and black strings, Journal of High Energy Physics, 2000, 1, article 021 (2000) · Zbl 0990.83524 · doi:10.1088/1126-6708/2000/01/021
[20] Hemming, S.; Keski-Vakkuri, E.; Kraus, P., Strings in the extended BTZ spacetime, Journal of High Energy Physics, 2002, 10, article 006 (2002) · doi:10.1088/1126-6708/2002/10/006
[21] Setare, M. R., Non-rotating BTZ black hole area spectrum from quasi-normal modes, Classical and Quantum Gravity, 21, 6, 1453-1457 (2004) · Zbl 1170.83422 · doi:10.1088/0264-9381/21/6/012
[22] Sahoo, B.; Sen, A., BTZ black hole with Chern-Simons and higher derivative terms, Journal of High Energy Physics, 2006, 7, article 008 (2006) · doi:10.1088/1126-6708/2006/07/008
[23] Cadoni, M.; Setare, M. R., Near-horizon limit of the charged BTZ black hole and AdS2 quantum gravity, Journal of High Energy Physics, 2008, 7, article 131 (2008) · doi:10.1088/1126-6708/2008/07/131
[24] Parsons, J.; Ross, S. F., Strings in extremal BTZ black holes, Journal of High Energy Physics, 2009, 4, article 134 (2009) · doi:10.1088/1126-6708/2009/04/134
[25] Ayon-Beato, E.; Garbarz, A.; Giribet, G.; Hassaine, M., Lifshitz black hole in three dimensions, Physical Review D, 80 (2009) · doi:10.1103/physrevd.80.104029
[26] Gurtug, O.; Mazharimousavi, S. H.; Halilsoy, M., 2+1-dimensional electrically charged black holes in Einstein-power-Maxwell theory, Physical Review D, 85, 10 (2012) · Zbl 1381.83064 · doi:10.1103/physrevd.85.104004
[27] Hendi, S. H.; Eslam Panah, B.; Saffari, R., Exact solutions of three-dimensional black holes: einstein gravity versus F(R) gravity, International Journal of Modern Physics D, 23, 11 (2014) · Zbl 1303.83037 · doi:10.1142/s0218271814500886
[28] Chen, F.; Dasgupta, K.; Lapan, J. M.; Seo, J.; Tatar, R., Gauge/gravity duality in heterotic string theory, Physical Review D: Particles, Fields, Gravitation and Cosmology, 88, 6 (2013) · doi:10.1103/physrevd.88.066003
[29] Fukuma, M.; Matsuura, S.; Sakai, T., Higher-derivative gravity and the AdS/CFT correspondence, Progress of Theoretical Physics, 105, 6, 1017-1044 (2001) · Zbl 0997.81112 · doi:10.1143/ptp.105.1017
[30] Aros, R.; Romo, M.; Zamorano, N., Conformal gravity from the AdS/CFT mechanism, Physical Review D, 75, 6 (2007) · doi:10.1103/physrevd.75.067501
[31] Ayón-Beato, E.; García, A., New regular black hole solution from nonlinear electrodynamics, Physics Letters B, 464, 1-2, 25-29 (1999) · Zbl 0994.83029 · doi:10.1016/s0370-2693(99)01038-2
[32] Fernando, S.; Krug, D., Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant, General Relativity and Gravitation, 35, 1, 129-137 (2003) · Zbl 1019.83009 · doi:10.1023/A:1021315214180
[33] Matyjasek, J., Extremal limit of the regular charged black holes in nonlinear electrodynamics, Physical Review D: Third Series, 70, 4 (2004) · doi:10.1103/physrevd.70.047504
[34] Cai, R.-G.; Pang, D.-W.; Wang, A., Born-Infeld black holes in (A)dS spaces, Physical Review D, 70, 12 (2004) · doi:10.1103/physrevd.70.124034
[35] Dey, T. K., Born-Infeld black holes in the presence of a cosmological constant, Physics Letters B, 595, 1-4, 484-490 (2004) · Zbl 1247.83102 · doi:10.1016/j.physletb.2004.06.047
[36] Fernando, S., Thermodynamics of Born-Infeld—anti-de Sitter black holes in the grand canonical ensemble, Physical Review D, 74, 10 (2006) · doi:10.1103/physrevd.74.104032
[37] Hassaïne, M.; Martínez, C., Higher-dimensional black holes with a conformally invariant Maxwell source, Physical Review D. Particles, Fields, Gravitation, and Cosmology, 75, 2 (2007) · doi:10.1103/physrevd.75.027502
[38] Myung, Y. S.; Kim, Y.-W.; Park, Y.-J., Thermodynamics and phase transitions in the Born-Infeld-anti-de Sitter black holes, Physical Review D, 78, 8 (2008) · doi:10.1103/physrevd.78.084002
[39] Yang, I.-C.; Lin, C.-L.; Radinschi, I., The energy of regular black hole in general relativity coupled to nonlinear electrodynamics, International Journal of Theoretical Physics, 48, 1, 248-255 (2009) · Zbl 1163.83352 · doi:10.1007/s10773-008-9799-6
[40] Maeda, H.; Hassaine, M.; Martinez, C., Lovelock black holes with a nonlinear Maxwell field, Physical Review D, 79 (2009) · doi:10.1103/physrevd.79.044012
[41] Hendi, S. H.; Panah, B. E., Thermodynamics of rotating black branes in Gauss-Bonnet-nonlinear Maxwell gravity, Physics Letters B, 684, 2-3, 77-84 (2010) · doi:10.1016/j.physletb.2010.01.026
[42] Hendi, S. H., Rotating black branes in the presence of nonlinear electromagnetic field, The European Physical Journal C, 69, 1-2, 281-288 (2010) · doi:10.1140/epjc/s10052-010-1359-6
[43] Mišković, O.; Olea, R., Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space, Physical Review D, 83 (2011) · doi:10.1103/physrevd.83.024011
[44] Li, P.; Yue, R.-H.; Zou, D.-C., Thermodynamics of third order Lovelock-Born-Infeld black holes, Communications in Theoretical Physics, 56, 5, 845-850 (2011) · Zbl 1247.83107 · doi:10.1088/0253-6102/56/5/10
[45] Zou, D. C.; Yang, Z. Y.; Yue, R. H.; Li, P., Thermodynamics of Gauss-Bonnet-BORn-Infeld black holes in AdS space, Modern Physics Letters A, 26, 7, 515-529 (2011) · Zbl 1209.83031 · doi:10.1142/s0217732311034724
[46] Banerjee, R.; Roychowdhury, D., Critical behavior of Born-Infeld AdS black holes in higher dimensions, Physical Review D, 85, 10 (2012) · doi:10.1103/PhysRevD.85.104043
[47] Hendi, S. H., Asymptotic Reissner-Nordström black holes, Annals of Physics, 333, 282-289 (2013) · Zbl 1284.83060 · doi:10.1016/j.aop.2013.03.008
[48] Zou, D.-C.; Zhang, S.-J.; Wang, B., Critical behavior of Born-Infeld AdS black holes in the extended phase space thermodynamics, Physical Review D, 89 (2014) · doi:10.1103/physrevd.89.044002
[49] Mazharimousavi, S. H.; Halilsoy, M.; Gurtug, O., A new Einstein-nonlinear electrodynamics solution in 2+1 dimensions, European Physical Journal C, 74, 1, article 2735 (2014) · Zbl 1381.83064 · doi:10.1140/epjc/s10052-014-2735-4
[50] Gibbons, G.; Kallosh, R.; Kol, B., Moduli, scalar charges, and the first law of black hole thermodynamics, Physical Review Letters, 77, 25, 4992-4995 (1996) · doi:10.1103/physrevlett.77.4992
[51] Bretón, N., Smarr’s formula for black holes with non-linear electrodynamics, General Relativity and Gravitation, 37, 4, 643-650 (2005) · Zbl 1077.83030 · doi:10.1007/s10714-005-0051-x
[52] Kastor, D.; Ray, S.; Traschen, J., Enthalpy and the mechanics of AdS black holes, Classical and Quantum Gravity, 26, 19 (2009) · Zbl 1178.83030 · doi:10.1088/0264-9381/26/19/195011
[53] Yi-Huan, W., Energy and first law of thermodynamics for Born-Infeld-anti-de-Sitter black hole, Chinese Physics B, 19, 9 (2010) · doi:10.1088/1674-1056/19/9/090404
[54] Dolan, B. P., Pressure and volume in the first law of black hole thermodynamics, Classical and Quantum Gravity, 28, 23 (2011) · Zbl 1231.83020 · doi:10.1088/0264-9381/28/23/235017
[55] Kubiznak, D.; Mann, R. B., \(P - V\) criticality of charged AdS black holes, Journal of High Energy Physics, 2012, 7, article 33 (2012) · Zbl 1397.83072 · doi:10.1007/JHEP07(2012)033
[56] Cai, R. G.; Cao, L. M.; Li, L.; Yang, R. Q., \(P - V\) criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, Journal of High Energy Physics, 2011, 9, article 005 (2011)
[57] Hendi, S. H.; Vahidinia, M. H., Extended phase space thermodynamics and \(P - V\) criticality of black holes with a nonlinear source, Physical Review D, 88, 8 (2013) · doi:10.1103/physrevd.88.084045
[58] Ma, M. S.; Liu, F.; Zhao, R., Continuous phase transition and critical behaviors of 3D black hole with torsion, Classical and Quantum Gravity, 31, 9 (2014) · Zbl 1291.83152 · doi:10.1088/0264-9381/31/9/095001
[59] Mo, J.-X.; Zeng, X.-X.; Li, G.-Q.; Jiang, X.; Liu, W.-B., A unified phase transition picture of the charged topological black hole in Hořava-Lifshitz gravity, Journal of High Energy Physics, 2013, article 056 (2013) · Zbl 1342.83193 · doi:10.1007/jhep10(2013)056
[60] Tharanath, R.; Suresh, J.; Kuriakose, V. C., Phase transitions and geometrothermodynamics of regular black holes, General Relativity and Gravitation, 47, article 46 (2015) · Zbl 1317.83054 · doi:10.1007/s10714-015-1884-6
[61] Hendi, S. H.; Panahiyan, S.; Eslam Panah, B., \(P - V\) criticality and geometrothermodynamics of black holes with Born-Infeld type nonlinear electrodynamics · Zbl 1337.83039
[62] Zhang, J. L.; Cai, R. G.; Yu, H., Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in \(\text{AdS}_5 \times \text{S}_5\) spacetime, Journal of High Energy Physics, 2015, 2, article 143 (2015) · Zbl 1388.83510 · doi:10.1007/JHEP02(2015)143
[63] Zhang, J. L.; Cai, R. G.; Yu, H., Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space, Physical Review D, 91, 4 (2015) · doi:10.1103/PhysRevD.91.044028
[64] Mo, J.-X.; Liu, W.-B., Phase transitions, geometrothermodynamics, and critical exponents of black holes with conformal anomaly, Advances in High Energy Physics, 2014 (2014) · doi:10.1155/2014/739454
[65] Breton, N.; Bergliaffa, S. E. P., On the stability of black holes with nonlinear electromagnetic fields
[66] Grunau, S.; Neumann, H., Thermodynamics of a rotating black hole in minimal five-dimensional gauged supergravity · Zbl 1327.83160
[67] Dolan, B. P., Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions, Classical and Quantum Gravity, 31, 16 (2014) · Zbl 1298.83078 · doi:10.1088/0264-9381/31/16/165011
[68] Hendi, S. H.; Panahiyan, S., Thermodynamic instability of topological black holes in Gauss-Bonnet gravity with a generalized electrodynamics, Physical Review D, 90, 12 (2014) · doi:10.1103/physrevd.90.124008
[69] Hendi, S. H.; Momennia, M., Thermodynamic instability of topological black holes with nonlinear source, The European Physical Journal C, 75, 2 (2015) · doi:10.1140/epjc/s10052-015-3283-2
[70] Hendi, S. H.; Panahiyan, S.; Mamasani, R., Thermodynamic stability of charged BTZ black holes: ensemble dependency problem and its solution, General Relativity and Gravitation, 47, article 91 (2015) · Zbl 1327.83163 · doi:10.1007/s10714-015-1932-2
[71] Weinhold, F., Metric geometry of equilibrium thermodynamics, The Journal of Chemical Physics, 63, 6, article 2479 (1975) · doi:10.1063/1.431689
[72] Weinhold, F., Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations, The Journal of Chemical Physics, 63, 6, 2484-2487 (1975) · doi:10.1063/1.431635
[73] Ruppeiner, G., Thermodynamics: a Riemannian geometric model, Physical Review A, 20, 4, 1608-1613 (1979) · doi:10.1103/physreva.20.1608
[74] Ruppeiner, G., Riemannian geometry in thermodynamic fluctuation theory, Reviews of Modern Physics, 67, 3, 605-659 (1995) · doi:10.1103/RevModPhys.67.605
[75] Janyszek, H., On the Riemannian metrical structure in the classical statistical equilibrium thermodynamics, Reports on Mathematical Physics, 24, 1, 1-10 (1986) · Zbl 0637.53085 · doi:10.1016/0034-4877(86)90036-4
[76] Janyszek, H.; Mrugała, R., Riemannian geometry and the thermodynamics of model magnetic systems, Physical Review A, 39, 12, 6515-6523 (1989) · doi:10.1103/physreva.39.6515
[77] Brody, E. J., Applications of the Kakutani metric to real-space renormalization, Physical Review Letters, 58, 3, 179-182 (1987) · doi:10.1103/PhysRevLett.58.179
[78] Dolan, B. P.; Johnston, D. A.; Kenna, R., The information geometry of the one-dimensional Potts model, Journal of Physics A. Mathematical and General, 35, 43, 9025-9035 (2002) · Zbl 1050.82005 · doi:10.1088/0305-4470/35/43/303
[79] Janke, W.; Johnston, D. A.; Kenna, R., Information geometry of the spherical model, Physical Review E, 67, 4 (2003) · Zbl 1066.82501 · doi:10.1103/PhysRevE.67.046106
[80] Janke, W.; Johnston, D. A.; Kenna, R., Information geometry and phase transitions, Physica A: Statistical Mechanics and its Applications, 336, 1-2, 181-186 (2004) · Zbl 1036.82508 · doi:10.1016/j.physa.2004.01.023
[81] Ferrara, S.; Gibbons, G. W.; Kallosh, R., Black holes and critical points in moduli space, Nuclear Physics. B, 500, 1-3, 75-93 (1997) · Zbl 0935.83022 · doi:10.1016/s0550-3213(97)00324-6
[82] Cai, R.-G.; Cho, J.-H., Thermodynamic curvature of the BTZ black hole, Physical Review D, 60, 6 (1999) · doi:10.1103/physrevd.60.067502
[83] Åman, J. E.; Bengtsson, I.; Pidokrajt, N., Geometry of black hole thermodynamics, General Relativity and Gravitation, 35, 10, 1733-1743 (2003) · Zbl 1034.83011 · doi:10.1023/a:1026058111582
[84] Carlip, S.; Vaidya, S., Phase transitions and critical behaviour for charged black holes, Classical and Quantum Gravity, 20, 16, 3827-3837 (2003) · Zbl 1045.83041 · doi:10.1088/0264-9381/20/16/319
[85] Sarkar, T.; Sengupta, G.; Tiwari, B. N., On the thermodynamic geometry of BTZ black holes, Journal of High Energy Physics, 11, article 015 (2006) · doi:10.1088/1126-6708/2006/11/015
[86] Mirza, B.; Zamaninasab, M., Ruppeiner geometry of RN black holes: flat or curved?, Journal of High Energy Physics, 2007, 6, article 059 (2007) · doi:10.1088/1126-6708/2007/06/059
[87] Hendi, S. H.; Panahiyan, S.; Panah, B. E.; Momennia, M., A new approach toward geometrical concept of black hole thermodynamics · Zbl 1358.83045
[88] Quevedo, H., Geometrothermodynamics, Journal of Mathematical Physics, 48, 1 (2007) · Zbl 1121.80011 · doi:10.1063/1.2409524
[89] Quevedo, H.; Sánchez, A., Geometrothermodynamics of asymptotically Anti-de Sitter black holes, Journal of High Energy Physics, 2008, 9, article 034 (2008) · Zbl 1245.83037 · doi:10.1088/1126-6708/2008/09/034
[90] Quevedo, H.; Sanchez, A.; Taj, S.; Vazquez, A., Phase transitions in geometrothermodynamics, General Relativity and Gravitation, 43, 4, 1153-1165 (2011) · Zbl 1213.83129 · doi:10.1007/s10714-010-0996-2
[91] Han, Y.; Chen, G., Thermodynamics, geometrothermodynamics and critical behavior of (2+1)-dimensional black holes, Physics Letters B, 714, 2-5, 127-130 (2012) · doi:10.1016/j.physletb.2012.06.068
[92] Bravetti, A.; Momeni, D.; Myrzakulov, R.; Quevedo, H., Geometrothermodynamics of higher dimensional black holes, General Relativity and Gravitation, 45, 8, 1603-1617 (2013) · Zbl 1273.83090 · doi:10.1007/s10714-013-1549-2
[93] Bravetti, A.; Momeni, D.; Myrzakulov, R.; Altaibayeva, A., Geometrothermodynamics of Myers-Perry black holes, Advances in High Energy Physics, 2013 (2013) · Zbl 1328.83080 · doi:10.1155/2013/549808
[94] Hendi, S. H., Thermodynamic properties of asymptotically Reissner-Nordström black holes, Annals of Physics, 346, 42-50 (2014) · Zbl 1342.83171 · doi:10.1016/j.aop.2014.04.006
[95] Hendi, S. H., Asymptotic charged BTZ black hole solutions, Journal of High Energy Physics, 2012, 3, article 065 (2012) · Zbl 1309.83067 · doi:10.1007/JHEP03(2012)065
[96] Soleng, H. H., Charged black points in general relativity coupled to the logarithmic U(1) gauge theory, Physical Review D, 52, 10, 6178-6181 (1995) · doi:10.1103/PhysRevD.52.6178
[97] Salamon, P.; Nulton, J.; Ihrig, E., On the relation between entropy and energy versions of thermodynamic length, The Journal of Chemical Physics, 80, 1, 436-437 (1984) · doi:10.1063/1.446467
[98] Bravetti, A.; Monsalvo, C. S. L.; Nettel, F.; Quevedo, H., The conformal metric structure of Geometrothermodynamics, Journal of Mathematical Physics, 54 (2013) · Zbl 1287.80002 · doi:10.1063/1.4795136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.