×

Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. (English) Zbl 1366.76096

Summary: This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via \(\rho\) (the density of the fluid), \(u\) (the velocity of the field), and \(d\) (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the \(L^p\)-norm (\(p>2\)) of the velocity \(u\) cannot be controlled in terms only of \(\rho^{\frac{1}{2}}u\) and \(\nabla u\) here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li and Z. Liang, J. Math. Pures Appl. (9) 102, No. 4, 640–671 (2014; Zbl 1317.35177)] for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B45 A priori estimates in context of PDEs
35Q35 PDEs in connection with fluid mechanics

Citations:

Zbl 1317.35177
Full Text: DOI

References:

[1] S. Ding, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst., 32, 539 (2012) · Zbl 1235.35156 · doi:10.3934/dcds.2012.32.539
[2] S. Ding, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15, 357 (2011) · Zbl 1217.35099 · doi:10.3934/dcdsb.2011.15.357
[3] J. Ericksen, Hydrostatic theory of liquid crystal,, Arch. Ration. Mech. Anal., 9, 371 (1962) · Zbl 0105.23403 · doi:10.1007/BF00253358
[4] P. Gennes de, <em>The Physics of Liquid Crystals</em>,, Oxford (1974) · Zbl 0295.76005
[5] P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., 13, 137 (2011) · Zbl 1270.35342 · doi:10.1007/s00021-009-0006-1
[6] T. Huang, Strong solutions of the compressible nematic liquid crystal flow,, J. Differential Equations, 252, 2222 (2012) · Zbl 1233.35168 · doi:10.1016/j.jde.2011.07.036
[7] T. Huang, Blow up criterion for compressible nematic liquid crystal flows in dimension three,, Arch. Rational Mech. Anal., 204, 285 (2012) · Zbl 1314.76010 · doi:10.1007/s00205-011-0476-1
[8] X. Huang, A Serrin criterion for compressible nematic liquid crystal flows,, Math. Methods Appl. Sci., 36, 1363 (2013) · Zbl 1291.35220 · doi:10.1002/mma.2689
[9] F. Jiang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain,, J. Funct. Anal., 265, 3369 (2013) · Zbl 1308.35215 · doi:10.1016/j.jfa.2013.07.026
[10] F. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28, 265 (1968) · Zbl 0159.57101 · doi:10.1007/BF00251810
[11] J. Li, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows,, preprint
[12] J. Li, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum,, J. Math. Pures Appl., 102, 640 (2014) · Zbl 1317.35177 · doi:10.1016/j.matpur.2014.02.001
[13] L. Li, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum,, preprint · Zbl 1386.76016
[14] F. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42, 789 (1989) · Zbl 0703.35173 · doi:10.1002/cpa.3160420605
[15] F. Lin, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48, 501 (1995) · Zbl 0842.35084 · doi:10.1002/cpa.3160480503
[16] F. Lin, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dyn. Syst., 2, 1 (1996) · Zbl 0948.35098 · doi:10.3934/dcds.1996.2.1
[17] F. Lin, <em>The Analysis of Harmonic Maps and Their Heat Flows</em>,, Hackensack: World Scientific Publishing Co. Pte. Ltd. (2008) · Zbl 1203.58004 · doi:10.1142/9789812779533
[18] F. Lin, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals,, Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014) · Zbl 1353.76004 · doi:10.1098/rsta.2013.0361
[19] J. Lin, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three,, SIAM J. Math. Anal., 47, 2952 (2015) · Zbl 1321.35167 · doi:10.1137/15M1007665
[20] P. Lions, <em>Mathematical Topics in Fluid Mechanics, vol.1. Incompressible Models</em>,, NewYork: Oxford University Press (1996) · Zbl 0866.76002
[21] Q. Liu, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows,, J. Differential Equations, 261, 6521 (2016) · Zbl 1364.76015 · doi:10.1016/j.jde.2016.08.044
[22] S. Liu, A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density,, Acta Appl. Math., 147, 39 (2017) · Zbl 1365.76341 · doi:10.1007/s10440-016-0067-0
[23] S. Liu, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density,, Discrete Contin. Dyn. Syst. Ser. B, 21, 2631 (2016) · Zbl 1354.35107 · doi:10.3934/dcdsb.2016065
[24] S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities,, J. Math. Anal. Appl., 397, 595 (2013) · Zbl 1256.35088 · doi:10.1016/j.jmaa.2012.08.010
[25] T. Wang, A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows,, Math. Methods Appl. Sci., 40, 546 (2017) · Zbl 1358.35135 · doi:10.1002/mma.3990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.