×

Frictional mortar contact for finite deformation problems with synthetic contact kinematics: comparison of averaged non-mortar side and non continuous mortar side normal field. (English) Zbl 1366.74048

Summary: In this paper we present a mortar based method, for frictional two dimensional contact problems. It is based on the work by M. Tur et al. [Comput. Methods Appl. Mech. Eng. 198, No. 37–40, 2860–2873 (2009; Zbl 1229.74141)] and uses the same concentrated integration scheme as well as a non regularized tangential contact formulation based on Lagrange multipliers only. We abstract the contact kinematics to a rather synthetic formulation. Therefore we are able to use two different methods of defining the normal field on the discretized surface normal: The popular method of averaged non-mortar side normal and the rather simple non continuous mortar side normal field. The problem is solved with a fixed point Newton-Raphson procedure and for both normal fields the full linearizations are derived. With numerical examples we show the performance of the more concise formulation of the non averaged non continuous mortar side normal field.

MSC:

74M15 Contact in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
74B20 Nonlinear elasticity

Citations:

Zbl 1229.74141

Software:

Gmsh
Full Text: DOI

References:

[1] Archer G, Fenves G, Thewalt C (1999) A new object-oriented finite element analysis program architecture. Comput Struct 70: 63-75 · Zbl 0936.74064 · doi:10.1016/S0045-7949(98)00194-1
[2] Benson D, Hallquist J (1990) A singl durface contact algorithm for postbucklung. Comput Methods Appl Mech Eng 78: 141-163 · Zbl 0708.73079 · doi:10.1016/0045-7825(90)90098-7
[3] Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge · Zbl 0891.73001
[4] Fischer KA, Wriggers P (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36: 226-244 · Zbl 1102.74033 · doi:10.1007/s00466-005-0660-y
[5] Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195: 5020-5036 · Zbl 1118.74047 · doi:10.1016/j.cma.2005.09.025
[6] Flemisch B, Puso MA, Wohlmuth BI (2005) A new dual mortar method for curved interfaces: 2d elasticity. Int J Numer Methods Eng 63: 813-832 · Zbl 1084.74050 · doi:10.1002/nme.1300
[7] Geuzaine C, Remacle J (2009) Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11): 1309-1331 · Zbl 1176.74181 · doi:10.1002/nme.2579
[8] Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth newton method with consistent linearization. Int J Numer Methods Eng 84(5): 543-571 · Zbl 1202.74121
[9] Hallquist J, Goudreau G, DJ B (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51: 107137 · Zbl 0567.73120 · doi:10.1016/0045-7825(85)90030-1
[10] Hammer ME (2006) SOOFEA—software for object oriented finite element analysis http://soofea.fest.tugraz.at · Zbl 1230.74237
[11] Hartmann S, Ramm E (2008) A mortar based contact formulation for non-linear dynamics using dual lagrange multipliers. Finite Elem Anal Des 44: 245-258 · doi:10.1016/j.finel.2007.11.018
[12] Hild P (2000) Numerical implementation of two nonconforming finite element methods for unilateral contact. Comp Methods Appl Mech Eng 184: 99-123 · Zbl 1009.74062 · doi:10.1016/S0045-7825(99)00096-1
[13] Hüeber S, Wolmuth B (2005) A primaldual active set strategy for non-linear multibody contact problems. Comp Methods Appl Mech Eng 194: 3147-3166 · Zbl 1093.74056 · doi:10.1016/j.cma.2004.08.006
[14] Hüeber S, Wolmuth B (2009) Thermo-mechanical contact problems on non-matching meshes. Comput Methods Appl Mech Eng 198: 1338-1350 · Zbl 1227.74072 · doi:10.1016/j.cma.2008.11.022
[15] Konyukhov A, Schweizerhof K (2006) A special focus on 2d formulations for contact problems using a covariant description. Int J Numer Methods Eng 66: 1432-1465 · Zbl 1106.74045 · doi:10.1002/nme.1604
[16] Laursen T (2002) Computational contact and impact mechanics. Springer, Berlin · Zbl 0996.74003
[17] Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody. Large deformation-frictional contact problems. Int J Numer Methods Eng 36(20): 3451-3485 · Zbl 0833.73057 · doi:10.1002/nme.1620362005
[18] McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48: 1525-1547 · Zbl 0972.74067 · doi:10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
[19] Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primaldual active set strategy. Int J Numer Methods Eng 79(11): 1354-1391 · Zbl 1176.74133 · doi:10.1002/nme.2614
[20] Puso MA (2004) A 3d mortar method for solid mechanics. Int J Numer Methods Eng 59: 315-336 · Zbl 1047.74065 · doi:10.1002/nme.865
[21] Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6-8): 601-629 · Zbl 1060.74636 · doi:10.1016/j.cma.2003.10.010
[22] Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45-47): 4891-4913 · Zbl 1112.74535 · doi:10.1016/j.cma.2004.06.001
[23] Schweizerhof K, Konyukhov A (2005) Covariant description for frictional contact problems. Comput Mech 35: 190-213 · Zbl 1143.74345 · doi:10.1007/s00466-004-0616-7
[24] Tur M, Fuenmayor F, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using lagrange multipliers. Comput Methods Appl Mech Eng 198(37-40): 2860-2873 · Zbl 1229.74141 · doi:10.1016/j.cma.2009.04.007
[25] Willner K (2003) Kontinuums- und Kontaktmechanik. Springer, Berlin · doi:10.1007/978-3-642-55814-6
[26] Wohlmuth BI (2000) A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J Numer Anal 38: 9891012 · Zbl 0974.65105 · doi:10.1137/S0036142999350929
[27] Wolmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38: 989-1012 · Zbl 0974.65105 · doi:10.1137/S0036142999350929
[28] Wriggers P (2007) Computational contact mechanics. Springer, Heidelberg · Zbl 1161.74005 · doi:10.1007/978-3-211-77298-0
[29] Wriggers P (2009) Nonlinear finite element methods. Springer, Berlin · Zbl 1352.74450
[30] Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Comput Mech 41: 189-205 · Zbl 1162.74481 · doi:10.1007/s00466-006-0116-z
[31] Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197: 756-772 · Zbl 1169.74513 · doi:10.1016/j.cma.2007.09.004
[32] Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9): 1183-1225 · Zbl 1161.74497 · doi:10.1002/nme.1222
[33] Zavarise G, Lorenzis LD (2009) The node-to-segment algorithm for 2d frictionless contact: classical formulation and special cases. Comput Methods Appl Mech Eng 198: 3428-3451 · Zbl 1230.74237 · doi:10.1016/j.cma.2009.06.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.