×

Shape analysis on Lie groups with applications in computer animation. (English) Zbl 1366.65018

Summary: Shape analysis methods have in the past few years become very popular, both for theoretical exploration as well as from an application point of view. Originally developed for planar curves, these methods have been expanded to higher dimensional curves, surfaces, activities, character motions and many other objects.
In this paper, we develop a framework for shape analysis of curves in Lie groups for problems of computer animations. In particular, we will use these methods to find cyclic approximations of non-cyclic character animations and interpolate between existing animations to generate new ones.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
65K10 Numerical optimization and variational techniques
49Q10 Optimization of shapes other than minimal surfaces

References:

[1] A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie · Zbl 0196.44103 · doi:10.1007/BF02786619
[2] M. Bauer, A new riemannian setting for surface registration, 2011,, 182-193, 182
[3] M. Bauer, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geometry and its Applications, 34, 139 (2014) · Zbl 1291.58002 · doi:10.1016/j.difgeo.2014.04.008
[4] M. Bauer, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, 1 · Zbl 1310.58005
[5] M. Bauer, Landmark-Guided Elastic Shape Analysis of Human Character Motions,, arXiv:1502.07666 [cs] · Zbl 1368.65028
[6] M. Bauer, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3, 389 (2011) · Zbl 1262.58004
[7] M. Bauer, Why use Sobolev metrics on the space of curves,, in Riemannian computing in computer vision, 233 (2016) · Zbl 1338.65043
[8] Carnegie-Mellon, Carnegie-Mellon Mocap Database, 2003,, URL <a href=
[9] E. Celledoni, An introduction to lie group integrators - basics, new developments and applications,, J. Comput. Phys., 257, 1040 (2014) · Zbl 1351.37266 · doi:10.1016/j.jcp.2012.12.031
[10] E. Celledoni, Lie group methods for rigid body dynamics and time integration on manifolds,, Computer Methods in Applied Mechanics and Engineering, 192, 421 (2003) · Zbl 1018.70007 · doi:10.1016/S0045-7825(02)00520-0
[11] J. Cheeger, <em>Comparison Theorems in Riemannian Geometry</em>,, North-Holland Publishing Co. (1975) · Zbl 0309.53035
[12] C. J. Cotter, A Reparameterisation Based Approach to Geodesic Constrained Solvers for Curve Matching,, International Journal of Computer Vision, 99, 103 (2012) · Zbl 1254.65024 · doi:10.1007/s11263-012-0520-0
[13] T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere,, J. Funct. Anal., 134, 350 (1995) · Zbl 0869.46013 · doi:10.1006/jfan.1995.1149
[14] R. Engelking, <em>General Topology</em>, vol. 6 of Sigma Series in Pure Mathematics,, 2nd edition (1989) · Zbl 0684.54001
[15] M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds,, The Visual Computer, 31, 1179 (2015) · doi:10.1007/s00371-014-1001-y
[16] M. Fuchs, Shape Metrics Based on Elastic Deformations,, Journal of Mathematical Imaging and Vision, 35, 86 (2009) · Zbl 1490.68248 · doi:10.1007/s10851-009-0156-z
[17] H. Glöckner, Regularity properties of infinite-dimensional Lie groups, and semiregularity, 2012,, URL <a href= (1208)
[18] H. Glöckner, Fundamentals of submersions and immersions between infinite-dimensional manifolds, 2015,, URL <a href=
[19] G. González Castro, Cyclic animation using partial differential equations,, The Visual Computer, 26, 325 (2010)
[20] F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie,, Leipz. Ber., 58, 19 (1906) · JFM 37.0176.02
[21] J. Hilgert, <em>Structure and Geometry of Lie Groups</em>,, Springer Monographs in Mathematics (2012) · Zbl 1229.22008 · doi:10.1007/978-0-387-84794-8
[22] A. Iserles, Lie-group methods,, Acta Numerica, 9, 215 (2000) · Zbl 1064.65147 · doi:10.1017/S0962492900002154
[23] E. Klassen, A path-straightening method for finding geodesics in shape spaces of closed curves in R3,, SIAM Journal of Applied Mathematics
[24] L. Kovar, Flexible Automatic Motion Blending with Registration Curves,, in Proceedings of the 2003 ACMSIGGRAPH/Eurographics Symposium on Computer Animation, 214 (2003)
[25] L. Kovar, Automated extraction and parameterization of motions in large data sets,, in ACM Transactions on Graphics (TOG), 23, 559 (2004) · doi:10.1145/1186562.1015760
[26] L. Kovar, Motion graphs,, ACM Trans. Graph., 21, 473 (2002)
[27] A. Kriegl, Regular infinite dimensional Lie groups,, Journal of Lie Theory, 7, 61 (1997) · Zbl 0893.22012
[28] A. Kriegl, <em>The convenient Setting of Global Analysis</em>, vol. 53 of Mathematical Surveys and Monographs,, American Mathematical Society (1997) · Zbl 0889.58001 · doi:10.1090/surv/053
[29] S. Kurtek, A novel riemannian framework for shape analysis of 3d objects,, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1625 (2010) · doi:10.1109/CVPR.2010.5539778
[30] S. Kurtek, Elastic symmetry analysis of anatomical structures,, in 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), 33 (2012) · doi:10.1109/MMBIA.2012.6164739
[31] S. Lahiri, Precise matching of PL curves in \(\mathbbR^N\) in the square root velocity framework,, Geom. Imaging Comput., 2, 133 (2015) · Zbl 1403.94020 · doi:10.4310/GIC.2015.v2.n3.a1
[32] S. Lang, <em>Fundamentals of Differential Geometry</em>, vol. 191 of Graduate Texts in Mathematics,, Springer-Verlag (1999) · Zbl 0932.53001 · doi:10.1007/978-1-4612-0541-8
[33] P. W. Michor, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23, 74 (2007) · Zbl 1116.58007 · doi:10.1016/j.acha.2006.07.004
[34] W. Mio, On shape of plane elastic curves,, Int. J. Comput. Vision, 73, 307 (2007) · Zbl 1477.68398 · doi:10.1007/s11263-006-9968-0
[35] K.-H. Neeb, Towards a Lie theory of locally convex groups,, Jpn. J. Math., 1, 291 (2006) · Zbl 1161.22012 · doi:10.1007/s11537-006-0606-y
[36] T. Pejsa, State of the art in example-based motion synthesis for virtual characters in interactive applications,, Computer Graphics Forum, 29, 202 (2010) · doi:10.1111/j.1467-8659.2009.01591.x
[37] A. Schmeding, The Lie group of bisections of a Lie groupoid,, Ann. Global Anal. Geom., 48, 87 (2015) · Zbl 1318.22002 · doi:10.1007/s10455-015-9459-z
[38] T. Sebastian, On aligning curves,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 116 (2003) · doi:10.1109/TPAMI.2003.1159951
[39] E. Sharon, 2d-shape analysis using conformal mapping,, International Journal of Computer Vision, 70, 55 (2006) · Zbl 1477.68492 · doi:10.1109/CVPR.2004.1315185
[40] K. Shoemake, Animating rotation with quaternion curves,, SIGGRAPH Comput. Graph., 19, 245 (1985) · doi:10.1145/325334.325242
[41] A. Srivastava, Statistical shape analysis: Clustering, learning, and testing,, IEEE Trans. Pattern Anal. Mach. Intell, 27, 590 (2005) · doi:10.1109/TPAMI.2005.86
[42] A. Srivastava, Shape analysis of elastic curves in euclidean spaces,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011) · doi:10.1109/TPAMI.2010.184
[43] J. Su, Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance,, The Annals of Applied Statistics, 8, 530 (2014) · Zbl 1454.62554 · doi:10.1214/13-AOAS701
[44] J. Su, Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition,, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 620 (2014) · doi:10.1109/CVPR.2014.86
[45] L. Younes, Computable elastic distances between shapes,, SIAM Journal on Applied Mathematics, 58, 565 (1998) · Zbl 0907.68158 · doi:10.1137/S0036139995287685
[46] L. Younes, Spaces and manifolds of shapes in computer vision: An overview,, Image and Vision Computing, 30, 389 (2012) · doi:10.1016/j.imavis.2011.09.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.