×

On approximate regulator in linear-quadratic problem with distributed control and rapidly oscillating parameters. (English) Zbl 1366.49024

Sadovnichiy, Victor A. (ed.) et al., Advances in dynamical systems and control. Cham: Springer (ISBN 978-3-319-40672-5/hbk; 978-3-319-40673-2/ebook). Studies in Systems, Decision and Control 69, 403-415 (2016).
Let \(\Omega\subset\mathbb{R}^n\) be a bounded domain, \(\varepsilon\in(0,1)\) a small parameter and \(\xi=\{\xi_i\}_{i=1}^\infty\in \ell_2\) a fixed vector. Set \(Q=(0,\infty)\times\Omega,\) and consider the optimal control problem \[ \begin{cases} \frac{dy}{dt}=A^\varepsilon y(t)+u(t,x), & (t,x)\in Q,\\ y|_{\partial\Omega}=0, & \\ y|_{t=0}=y^\varepsilon_0, \end{cases} \]
\[ \inf \int_0^\infty\int_\Omega \big(y^2(t,x)+u^2(t,x)\big)dtdx, \]
\[ u\in U_\varepsilon=\left\{ v\in L^2(Q):\;\forall i\geq 1 \;\left|\int_\Omega v(t,x)X_i^\varepsilon(x)dx\right|\leq \xi_i\;\text{for a.a.}\;t>0\right\}. \] Here \(A^\varepsilon=\text{div}(a^\varepsilon\nabla),\) \(a^\varepsilon=a\left(\frac{x}{\varepsilon}\right),\) \(a\) is a measurable, symmetric, periodic and uniformly elliptic matrix, while \(\{X^\varepsilon_i\}\) and \(\{\lambda_i^\varepsilon\}\) are solutions of the spectral problem \[ \begin{cases} A^\varepsilon X^\varepsilon_i=-\lambda^\varepsilon_i X^\varepsilon_i,\\ X^\varepsilon_i|_{\partial\Omega}=0, \end{cases} \] \(\{X^\varepsilon_i\}\subset H^1_0(\Omega)\) is an orthonormal basis in \(L^2(\Omega),\) and \(0<\lambda^\varepsilon_1\leq \lambda^\varepsilon_2\leq\ldots\) with \(\lambda^\varepsilon_i\to\infty\) as \(i\to\infty.\)
In the note under review, the authors obtain a feedback formula for the distributed optimal control by justifying the form of the approximate optimal regulator \(u[y]\) of the above problem.
For the entire collection see [Zbl 1357.00036].

MSC:

49K20 Optimality conditions for problems involving partial differential equations
49N10 Linear-quadratic optimal control problems
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Egorov, A.I.: Optimal Control by Linear Systems. Vyscha Shkola, Kyiv (1988) · Zbl 0717.49001
[2] Egorov, A.I., Mihailova, T.F.: Optimal control synthesis of heat process with bounded control. Part 1. Avtomatika 3, 57-61 (1990)
[3] Jikov, V.V., Kozlov, S.M., Oleynik, O.A.: Homogenization of Differential Operators and Integral Functions. Springer, Berlin (1994) · doi:10.1007/978-3-642-84659-5
[4] Kapustyan, O.V., Rusina, A.V.: Approximate synthesis of distributed bounded control for a parabolic problem with rapidly oscillating coefficients. Ukr. Math. J. 67, 355-365 (2015) · Zbl 1348.49030 · doi:10.1007/s11253-015-1089-x
[5] Kapustyan, O.V., Shklyar, T.B.: Global attractor of a parabolic inclusion with nonautonomous main part. J. Math. Sci. 187, 458-470 (2012) · Zbl 1323.37045 · doi:10.1007/s10958-012-1076-9
[6] Kapustyan, O.V., Kapustian, O.A., Sukretna, A.V.: Approximate Bounded Synthesis for Distributed Systems. LAP LAMBERT Academic Publishing, Saarbrucken (2013) · Zbl 1324.68001
[7] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971) · Zbl 0203.09001 · doi:10.1007/978-3-642-65024-6
[8] Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002) · Zbl 1254.37002 · doi:10.1007/978-1-4757-5037-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.