×

Growth of étale groupoids and simple algebras. (English) Zbl 1366.16016

The étale groupoids appear as a generalization of actions of discrete groups on topological spaces. The author studies growth and complexity of étale groupoids in relation to growth of their convolution algebras. As an application, the author constructs simple finitely generated algebras of arbitrary Gelfand-Kirillov dimension \(d\geq2\) and simple finitely generated algebras of quadratic growth over arbitrary fields. These algebras are constructed as matrices of countable size related to Sturmian words and Toeplitz sequences.
The author also studies groupoids associated with groups acting on a rooted tree. The respective convolution algebras are related to so called thinned algebras. In the case of a contracting self-similar group, the author proves a result of L. Bartholdi on an estimate of Gelfand-Kirillov dimension for the thinned algebras of contracting self-similar groups [Isr. J. Math. 154, 93–139 (2006; Zbl 1173.16303)].

MSC:

16P90 Growth rate, Gelfand-Kirillov dimension
22A22 Topological groupoids (including differentiable and Lie groupoids)
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)

Citations:

Zbl 1173.16303

References:

[1] 1. C. Anantharaman-Delaroche and J. Renault, Amenable Groupoids, Monographies de l’Enseignement Mathématique, Vol. 36 (Université de Genève, Genève, 2000). · Zbl 0960.43003
[2] 2. L. Bartholdi, Branch rings, thinned rings, tree enveloping rings, Isr. J. Math., 154 (2006) 93-139. genRefLink(16, ’S0218196716500156BIB002’, ’10.1007
[3] 3. L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Proc. Steklov Institute of Mathematics, Vol. 231 (2000), pp. 5-45. · Zbl 1172.37305
[4] 4. J. P. Bell, Simple algebras of Gelfand-Kirillov dimension two, Proc. Amer. Math. Soc.137(3) (2009) 877-883. genRefLink(16, ’S0218196716500156BIB004’, ’10.1090 · Zbl 1165.16011
[5] 5. J. P. Bell, A dichotomy result for prime algebras of Gelfand-Kirillov dimension two, J. Algebra324(4) (2010) 831-840. genRefLink(16, ’S0218196716500156BIB005’, ’10.1016
[6] 6. J. Bellissard, A. Julien and J. Savinien, Tiling groupoids and Bratteli diagrams, Ann. Henri Poincaré11(1-2) (2010) 69-99. genRefLink(16, ’S0218196716500156BIB006’, ’10.1007
[7] 7. G. E. Bredon, Topology and geometry, Graduate Texts in Mathematics, Vol, 139 (Springer-Verlag, New York, 1997). · Zbl 0934.55001
[8] 8. J. Brown, L. O. Clark, C. Farthing and A. Sims, Simplicity of algebras associated to étale groupoids, Semigroup Forum88(2) (2014) 433-452. genRefLink(16, ’S0218196716500156BIB008’, ’10.1007
[9] 9. J. Cassaigne and F. Nicolas, Factor complexity, in Combinatorics, Automata and Number Theory, Encyclopedia Mathematics Applications (Cambridge University Press, Cambridge, 2010), pp. 163-247. genRefLink(16, ’S0218196716500156BIB009’, ’10.1017 · Zbl 1216.68204
[10] 10. A. Connes, A survey of foliations and operator algebras, in Operator Algebras and Applications, Vol. 38, Part 1 of Proc. Symp. Pure Mathematics (1982), pp. 521-628. genRefLink(16, ’S0218196716500156BIB010’, ’10.1090 · Zbl 0531.57023
[11] 11. S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Mathematics 206 (1999), Combinatorics and number theory (Tiruchirappalli, 1996), pp. 145-154. · Zbl 0936.37008
[12] 12. R. Grigorchuk and V. Nekrashevych, Self-similar groups, operator algebras and Schur complement, J. Modern Dynam.1(3) (2007) 323-370. genRefLink(16, ’S0218196716500156BIB012’, ’10.3934
[13] 13. R. I. Grigorchuk, On Burnside’s problem on periodic groups, Functional Anal. Appl.14(1) (1980) 41-43. genRefLink(16, ’S0218196716500156BIB013’, ’10.1007 · Zbl 0595.20029
[14] 14. A. Haefliger, Groupoids and foliations, in Groupoids in Analysis, Geometry and Physics, AMS-IMS-SIAM Joint Summer Research Conference, Vol. 282, 20-24 June 1999, University of Colorado, Boulder, CO, USA, pp. 83-100.
[15] 15. A. Haefliger, Foliations and compactly generated pseudogroups, in Foliations: Geometry and Dynamics (Warsaw, 2000), pp. 275-295; (World Scientific Publication River Edge, NJ, 2002). · Zbl 1002.57059
[16] 16. K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. Math. (2), 178(2) (2013) 775-787. genRefLink(16, ’S0218196716500156BIB016’, ’10.4007 · Zbl 1283.37011
[17] 17. K. Juschenko, V. Nekrashevych and M. de la Salle, Extensions of amenable groups by recurrent groupoids, preprint (2013), arXiv:1305.2637. · Zbl 1397.20043
[18] 18. V. A. Kaimanovich, Amenability, hyperfiniteness, and isoperimetric inequalities, C. R. Acad. Sci. Paris. Sér. I Math.325 (1997) 999-1004. genRefLink(16, ’S0218196716500156BIB018’, ’10.1016
[19] 19. M. Koskas, Complexités de suites de Toeplitz, Discrete Math.183 (1-3) (1998) 161-183. genRefLink(16, ’S0218196716500156BIB019’, ’10.1016
[20] 20. G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, in Graduate Studies in Mathematics, American Mathematical Society, Vol. 22 (Providence, RI, 2000). · Zbl 0957.16001
[21] 21. P. Kurka, Topological and Symbolic Dynamics, Cours Spécialisés [Specialized Courses], Société Mathématique de France, Vol. 11 (Paris, 2003).
[22] 22. N. M. Bon, Subshifts with slow complexity and simple groups with the Liouville property, Geom. Funct. Anal.24(5) (2014) 1637-1659. genRefLink(16, ’S0218196716500156BIB022’, ’10.1007
[23] 23. H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3), 104(1) (2012) 27-56. genRefLink(16, ’S0218196716500156BIB023’, ’10.1112
[24] 24. V. Nekrashevych, Cuntz-Pimsner algebras of group actions, J. Operat. Theory52(2) (2004) 223-249. genRefLink(128, ’S0218196716500156BIB024’, ’000227462600001’);
[25] 25. V. Nekrashevych, Self-Similar Groups, Mathematical Surveys and Monographs, American Mathematics Society, Vol. 117 (Providence, RI, 2005). genRefLink(16, ’S0218196716500156BIB025’, ’10.1090 · Zbl 1087.20032
[26] 26. V. Nekrashevych, Calgebras and self-similar groups, J. Für Die Reine Angew. Math.630 (2009) 59-123. genRefLink(128, ’S0218196716500156BIB026’, ’000267659700003’); · Zbl 1175.46048
[27] 27. V. Nekrashevych, Free subgroups in groups acting on rooted trees, Groups, Geometry Dyn.4(4) (2010) 847-862. genRefLink(16, ’S0218196716500156BIB027’, ’10.4171
[28] 28. V. Nekrashevych, Hyperbolic groupoids and duality, Memoirs of the A.M.S.237(1122) (2015) 108.
[29] 29. V. Nekrashevych and S. Sidki, Automorphisms of the binary tree: State-closed subgroups and dynamics of 1/2-endomorphisms, in Groups: Topological, Combinatorial and Arithmetic Aspects, ed. T. W. Müller, LMS Lecture Notes Series, Vol. 311 (2004), pp. 375-404. genRefLink(16, ’S0218196716500156BIB029’, ’10.1017 · Zbl 1144.20305
[30] 30. A. L. T. Paterson, Groupoids, Inverse Semigroups and their Operator Algebras, (Birkhäuser Boston, Boston, MA, 1999). genRefLink(16, ’S0218196716500156BIB030’, ’10.1007
[31] 31. J. Renault, A Groupoid Approach to CAlgebras, Lecture Notes in Mathematics, Vol. 793 (Springer-Verlag, Berlin, 1980). · Zbl 0433.46049
[32] 32. S. N. Sidki, A primitive ring associated to a Burnside 3-group, J. London Math. Soc. (2) 55 (1997) 55-64. genRefLink(16, ’S0218196716500156BIB032’, ’10.1112
[33] 33. B. Steinberg, A groupoid approach to discrete inverse semigroup algebras, Adv. Math.223(2) (2010) 689-727. genRefLink(16, ’S0218196716500156BIB033’, ’10.1016 · Zbl 1188.22003
[34] 34. U. Vishne, Primitive algebras with arbitrary Gelfand-Kirillov dimension, J. Algebra211(1) (1999) 150-158. genRefLink(16, ’S0218196716500156BIB034’, ’10.1006
[35] 35. R. B. Warfield, Jr, The Gelfand-Kirillov dimension of a tensor product, Math. Z.185(4) (1984) 441-447. genRefLink(16, ’S0218196716500156BIB035’, ’10.1007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.