×

Some exact BPS solutions for exotic vortices and monopoles. (English) Zbl 1365.81084

Summary: We present several analytical solutions of BPS vortices and monopoles in the generalized abelian Maxwell-Higgs and Yang-Mills-Higgs theories, respectively. These models have recently been extensively studied and several exact solutions have already been obtained in [R. Casana et al., “Analytical BPS Maxwell-Higgs vortices”, Adv. High Energy Phys. 2014, 1–9 (2014; doi:10.1155/2014/210929); “Analytical self-dual solutions in a nonstandard Yang-Mills-Higgs scenario”, Phys. Lett. B 722, No. 1–3, 193–197 (2013; doi:10.1016/j.physletb.2013.04.023)]. In each theory, the dynamics is controlled by the additional two positive scalar-field-dependent functions, \(f(| \phi |)\) and \(w(| \phi |)\). For the case of vortices, we work in the ordinary symmetry-breaking Higgs potential, while for the case of monopoles we have the ordinary condition of the Prasad-Sommerfield limit. Our results generalize the exact solutions found previously. We also present solutions for BPS vortices with higher winding number. These solutions suffer from the condition that \(w(| \phi |)\) has negative value at some finite range of \(r\), but we argue that since it satisfies the weaker positive-value conditions then the corresponding energy density is still positive-definite and, thus, they are acceptable BPS solutions.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R40 Symmetry breaking in quantum theory

References:

[1] Casana, R.; Ferreira, M. M.; da Hora, E.; dos Santos, C., Analytical BPS Maxwell-Higgs vortices, Adv. High Energy Phys., 2014, 210929 (2014) · Zbl 1425.81111
[2] Casana, R.; Ferreira, M. M.; da Hora, E.; dos Santos, C., Analytical self-dual solutions in a nonstandard Yang-Mills-Higgs scenario, Phys. Lett. B, 722, 193 (2013)
[3] Bogomolny, E. B., Stability of classical solutions, Sov. J. Nucl. Phys.. Sov. J. Nucl. Phys., Yad. Fiz., 24, 861 (1976)
[4] Atmaja, A. N.; Ramadhan, H. S., Bogomol’nyi equations of classical solutions, Phys. Rev. D, 90, 10, Article 105009 pp. (2014)
[5] Atmaja, A. N.; Ramadhan, H. S.; da Hora, E., A detailed study of Bogomol’nyi equations in two-dimensional generalized Maxwell-Higgs model using on-shell method
[6] Atmaja, A. N., A method for BPS equations of vortices · Zbl 1370.81102
[7] Prasad, M. K.; Sommerfield, C. M., An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett., 35, 760 (1975)
[8] Babichev, E., Global topological \(k\)-defects, Phys. Rev. D, 74, Article 085004 pp. (2006)
[9] Babichev, E., Gauge k-vortices, Phys. Rev. D, 77, Article 065021 pp. (2008)
[10] Sarangi, S., DBI global strings, J. High Energy Phys., 0807, Article 018 pp. (2008)
[11] Babichev, E.; Brax, P.; Caprini, C.; Martin, J.; Steer, D. A., Dirac Born Infeld (DBI) cosmic strings, J. High Energy Phys., 0903, Article 091 pp. (2009)
[12] Pavlovsky, O. V., Chiral Born-Infeld theory: topological spherically symmetrical solitons, Phys. Lett. B, 538, 202 (2002) · Zbl 0995.81065
[13] Ramadhan, H. S., Higher-dimensional DBI solitons, Phys. Rev. D, 85, Article 065014 pp. (2012)
[14] Ramadhan, H. S., On DBI Textures with generalized Hopf fibration, Phys. Lett. B, 713, 297 (2012)
[15] Derrick, G. H., Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5, 1252 (1964)
[16] Babichev, E.; Mukhanov, V.; Vikman, A., k-Essence, superluminal propagation, causality and emergent geometry, J. High Energy Phys., 0802, Article 101 pp. (2008)
[17] Armendariz-Picon, C.; Damour, T.; Mukhanov, V. F., \(k\)-inflation, Phys. Lett. B, 458, 209 (1999) · Zbl 0992.83096
[18] Armendariz-Picon, C.; Lim, E. A., Haloes of k-essence, J. Cosmol. Astropart. Phys., 0508, Article 007 pp. (2005)
[19] Ramadhan, H. S.; Cahyo, B. A.; Iqbal, M., Flux compactifications in Einstein-Born-Infeld theories, Phys. Rev. D, 92, 2, Article 024021 pp. (2015)
[20] Prasetyo, I.; Ramadhan, H. S., Gravity of a noncanonical global monopole: conical topology and compactification · Zbl 1332.83027
[21] Bazeia, D.; da Hora, E.; dos Santos, C.; Menezes, R., BPS solutions to a generalized Maxwell-Higgs model, Eur. Phys. J. C, 71, 1833 (2011)
[22] Casana, R.; Ferreira, M. M.; da Hora, E., Generalized BPS magnetic monopoles, Phys. Rev. D, 86, Article 085034 pp. (2012)
[23] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), Dover Publications · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.