×

On subshift presentations. (English) Zbl 1365.37013

Summary: We consider partitioned graphs, by which we mean finite directed graphs with a partitioned edge set \({\mathcal{E}}={\mathcal{E}}^{-}\cup {\mathcal{E}}^{+}\). Additionally given a relation \({\mathcal{R}}\) between the edges in \({\mathcal{E}}^{-}\) and the edges in \({\mathcal{E}}^{+}\), and under the appropriate assumptions on \({\mathcal{E}}^{-},{\mathcal{E}}^{+}\) and \({\mathcal{R}}\), denoting the vertex set of the graph by \(\mathfrak{P}\), we speak of an \({\mathcal{R}}\)-graph \({\mathcal{G}}_{{\mathcal{R}}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{+})\). From \({\mathcal{R}}\)-graphs \({\mathcal{G}}_{{\mathcal{R}}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{+})\) we construct semigroups (with zero) \({\mathcal{S}}_{{\mathcal{R}}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{+})\) that we call \({\mathcal{R}}\)-graph semigroups. We write a list of conditions on a topologically transitive subshift with property \((A)\) that together are sufficient for the subshift to have an \({\mathcal{R}}\)-graph semigroup as its associated semigroup.
Generalizing previous constructions, we describe a method of presenting subshifts by means of suitably structured finite labeled directed graphs \(({\mathcal{V}}, \Sigma,\lambda)\) with vertex set \({\mathcal{V}}\), edge set \(\Sigma\), and a label map that assigns to the edges in \(\Sigma\) labels in an \({\mathcal{R}}\)-graph semigroup \({\mathcal{S}}_{{\mathcal{R}}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{-})\). We denote the presented subshift by \(X({\mathcal{V}},\Sigma,\lambda)\) and call \(X({\mathcal{V}},\Sigma,\lambda)\) an \({\mathcal{S}}_{{\mathcal{R}}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{-})\)-presentation.
We introduce a property \((B)\) of subshifts that describes a relationship between contexts of admissible words of a subshift, and we introduce a property \((c)\) of subshifts that in addition describes a relationship between the past and future contexts and the context of admissible words of a subshift. Property \((B)\) and the simultaneous occurrence of properties \((B)\) and \((c)\) are invariants of topological conjugacy.
We consider subshifts in which every admissible word has a future context that is compatible with its entire past context. Such subshifts we call right instantaneous. We introduce a property \(RI\) of subshifts, and we prove that this property is a necessary and sufficient condition for a subshift to have a right instantaneous presentation. We consider also subshifts in which every admissible word has a future context that is compatible with its entire past context, and also a past context that is compatible with its entire future context. Such subshifts we call bi-instantaneous. We introduce a property \(BI\) of subshifts, and we prove that this property is a necessary and sufficient condition for a subshift to have a bi-instantaneous presentation.
We define a subshift as strongly bi-instantaneous if it has for every sufficiently long admissible word \(a\) an admissible word \(c\), that is contained in both the future context of \(a\) and the past context of \(a\), and that is such that the word \(ca\) is a word in the future context of \(a\) that is compatible with the entire past context of \(a\), and the word \(ac\) is a word in the past context of \(a\), that is compatible with the entire future context of \(a\). We show that a topologically transitive subshift with property \((A)\), and associated semigroup a graph inverse semigroup \({\mathcal{S}}\), has an \({\mathcal{S}}\)-presentation, if and only if it has properties \((c)\) and \(BI\), and a strongly bi-instantaneous presentation, if and only if it has properties \((c)\) and \(BI\), and all of its bi-instantaneous presentations are strongly bi-instantaneous.
We construct a class of subshifts with property \((A)\), to which certain graph inverse semigroups \({\mathcal{S}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{+})\) are associated, that do not have \({\mathcal{S}}(\mathfrak{P},{\mathcal{E}}^{-},{\mathcal{E}}^{+})\)-presentations.
We associate to the labeled directed graphs \(({\mathcal{V}},\Sigma,\lambda)\) topological Markov chains and Markov codes, and we derive an expression for the zeta function of \(X({\mathcal{V}},\Sigma,\lambda)\) in terms of the zeta functions of the topological Markov shifts and the generating functions of the Markov codes.

MSC:

37B10 Symbolic dynamics
54H20 Topological dynamics (MSC2010)
37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
37E25 Dynamical systems involving maps of trees and graphs

References:

[1] C. J.Ash and T. E.Hall. Inverse semigroups on graphs. Semigroup Forum11 (1975), 140-145.10.1007/BF02195262 · Zbl 0334.20043
[2] M.-P.Béal, M.Blockelet and C.Dima. Finite-type-Dyck shift spaces. Preprint, 2013, arXiv:1311.4223 [cs.FL].
[3] M.-P.Béal, M.Blockelet and C.Dima. Sofic-Dyck shifts. Preprint, 2015, arXiv:1305.7413 [cs.FL]. · Zbl 1425.68178
[4] M.-P.Béal, M.Blockelet and C.Dima. Sofic-Dyck shifts. Mathematical Foundations of Computer Science 2014(Lecture Notes in Computer Science, 8634). Springer, Heidelberg, 2014, pp. 63-74. · Zbl 1425.68178
[5] F.Blanchard and G.Hansel. Systèmes codés. Theoret. Comput. Sci.44 (1986), 17-49.10.1016/0304-3975(86)90108-8 · Zbl 0601.68056
[6] T. M.Carlsen and K.Matsumoto. Some remarks on the C*-algebras associated to subshifts. Math. Scand.95 (2004), 145-160.10.7146/math.scand.a-14453 · Zbl 1067.46045
[7] A.Costa and B.Steinberg. A categorical invariant of flow equivalence of shifts. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.214.74. · Zbl 1355.37021
[8] J.Cuntz and W.Krieger. A class of C^∗ -algebras and topological Markov chains. Invent. Math.56 (1980), 251-268.10.1007/BF01390048 · Zbl 0434.46045
[9] T.Hamachi and K.Inoue. Embeddings of shifts of finite type into the Dyck shift. Monatsh. Math.145 (2005), 107-129.10.1007/s00605-004-0297-5 · Zbl 1181.37009
[10] T.Hamachi, K.Inoue and W.Krieger. Subsystems of finite type and semigroup invariants of subshifts. J. Reine Angew. Math.632 (2009), 37-61. · Zbl 1177.37019
[11] T.Hamachi and W.Krieger. On certain subshifts and their associated monoids. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.214.57. · Zbl 1376.37034
[12] T.Hamachi and W.Krieger. A construction of subshifts and a class of semigroups. Preprint, 2013,arXiv:1303.4158 [math.DS]. · Zbl 1487.37012
[13] K.Inoue. The zeta function, periodic points and entropies of the Motzkin shift. Preprint, 2006, arXiv:math.DS/0602100.
[14] K.Inoue and W.Krieger. Subshifts from sofic shifts and Dyck shifts, zeta functions and topological entropy. Preprint, 2010, arXiv:1001.1839 [math.DS].
[15] K.Inoue and W.Krieger. Excluding words from Dyck shifts. Preprint, 2013, arXiv:1305.4720 [math.DS].
[16] G.Keller. Circular codes, loop counting, and zeta-functions. J. Combin. Theory56 (1991), 75-83.10.1016/0097-3165(91)90023-A · Zbl 0718.94013 · doi:10.1016/0097-3165(91)90023-A
[17] B. P.Kitchens. Symbolic Dynamics. Springer, Berlin, 1998.10.1007/978-3-642-58822-8 · Zbl 0892.58020 · doi:10.1007/978-3-642-58822-8
[18] W.Krieger. On the uniqueness of the equilibrium state. Math. Syst. Theory8 (1974), 97-104.10.1007/BF01762180 · Zbl 0302.28011 · doi:10.1007/BF01762180
[19] W.Krieger. On a syntactically defined invariant of symbolic dynamics. Ergod. Th. & Dynam. Sys.20 (2000), 501-516.10.1017/S0143385700000249 · Zbl 0992.37010 · doi:10.1017/S0143385700000249
[20] W.Krieger. On subshifts and topological Markov chains. Numbers, Information and Complexity (Bielefeld 1998). Kluwer Academic Publishers, Boston, 2000, pp. 453-472.10.1007/978-1-4757-6048-4_38 · Zbl 0957.60073
[21] W.Krieger. On subshifts and semigroups. Bull. Lond. Math. Soc.38 (2006), 617-624.10.1112/S0024609306018625 · Zbl 1097.37006 · doi:10.1112/S0024609306018625
[22] W.Krieger. Presentations of symbolic dynamical systems by labelled directed graphs (Notes for a ‘mini-cours’, SDA2, Paris, 4-5 October 2007). Preprint, 2012, arXiv:1209.1872 [math.DS].
[23] W.Krieger. On flow-equivalence of 𝓡-graph shifts. Münster J. Math. (2015). · Zbl 1356.37022
[24] W.Krieger and K.Matsumoto. A lambda-graph system for the Dyck shift and its K-groups. Doc. Math.8 (2003), 79-96. · Zbl 1029.37005
[25] W.Krieger and K.Matsumoto. Zeta functions and topological entropy of the Markov-Dyck shifts. Münster J. Math.4 (2011), 171-184. · Zbl 1258.37017
[26] W.Krieger and K.Matsumoto. A notion of synchronization of symbolic dynamics and a class of C^∗ -algebras. Acta Appl. Math.126 (2013), 263-275.10.1007/s10440-013-9817-4 · Zbl 1329.37010
[27] M. V.Lawson. Inverse Semigroups. World Scientific, Singapore, 1998.10.1142/3645 · Zbl 1079.20505 · doi:10.1142/3645
[28] D.Lind and B.Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511626302 · Zbl 1106.37301
[29] K.Matsumoto. Stabilized C^∗ -algebras constructed from symbolic dynamical systems. Ergod. Th. & Dynam. Sys.20 (2000), 821-841.10.1017/S0143385700000444 · Zbl 0964.46035 · doi:10.1017/S0143385700000444
[30] K.Matsumoto. A simple purely infinite C^∗ -algebra associated with a lambda-graph system of the Motzkin shift. Math. Z.248 (2004), 369-394.10.1007/s00209-004-0660-1 · Zbl 1065.46052 · doi:10.1007/s00209-004-0660-1
[31] K.Matsumoto. C^∗ -algebras arising from Dyck systems of topological Markov chains. Math. Scand.109 (2011), 31-54.10.7146/math.scand.a-15176 · Zbl 1250.37008 · doi:10.7146/math.scand.a-15176
[32] K.Matsumoto. Cuntz-Krieger algebras and a generalization of the Catalan numbers. Int. J. Math.24 (2013),1350040.10.1142/S0129167X13500407 · Zbl 1291.46051 · doi:10.1142/S0129167X13500407
[33] M.Nivat and J.-F.Perrot. Une généralisation du monoîd bicyclique. C. R. Acad. Sci. Paris, Ser. A271 (1970), 824-827. · Zbl 0206.30304
[34] J.-E.Pin. Syntactic semigroups. Handbook of Formal Languages. Vol. 1. Eds. G.Rozenberg and A.Salomaa. Springer, Berlin, Heidelberg, New York, 1997, pp. 597-746. · Zbl 0866.68057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.