×

Surface tension effects in the equatorial ocean dynamics. (English) Zbl 1365.35124

Wave dynamics in the equatorial region of the Pacific Ocean is studied using a boundary value problem for the motion of stratified fluids. For capillary waves, the level of the thermocline marking the interface of stratified equatorial flow, decreases as the strength of the wind above the ocean increases.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B55 Internal waves for incompressible inviscid fluids
76B70 Stratification effects in inviscid fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids
76E05 Parallel shear flows in hydrodynamic stability
Full Text: DOI

References:

[1] Bourassa, M.A., Vincent, D.G., Wood, W.L.: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci. 56, 1123-1139 (1999) · doi:10.1175/1520-0469(1999)056<1123:AFPITE>2.0.CO;2
[2] Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012) · doi:10.1029/2012GL051169
[3] Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012) · doi:10.1029/2012JC007879
[4] Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802-2810 (2013) · doi:10.1002/jgrc.20219
[5] Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44(2), 781-789 (2014) · doi:10.1175/JPO-D-13-0174.1
[6] Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311-358 (2015) · Zbl 1542.86008 · doi:10.1080/03091929.2015.1066785
[7] Constantin, A., Ivanov, R.: A Hamiltonian approach to wave-current interactions in two-layer fluids. Phys. Fluids 27, 086603 (2015) · Zbl 1326.76021 · doi:10.1063/1.4929457
[8] Cronin, M.F., Kessler, W.S.: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr. 39, 1200-1215 (2009) · doi:10.1175/2008JPO4064.1
[9] Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophyiscal Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011) · Zbl 1319.86001
[10] Davies, A.M.: Modelling storm surge current structure. In: Dyke, P.P.G., Moscardini, A.O., Robson, E.H. (ed) Offshore and Coastal Modelling, pp. 55-81. Wiley: New York (2013) · Zbl 1304.35698
[11] Fedorov, A.V., Brown, J.N.: Equatorial waves. In: Steele, J. (ed.) Encyclopedia of Ocean Sciences, pp. 3679-3695. Academic Press, New York (2009)
[12] Friedlander S, Serre D, pp. 201-329. North-Holland, Amsterdam (2007) · Zbl 1297.86002
[13] García-Nava, H., Ocampo-Torres, F.J., Osuna, P., Donelan, M.A.: Wind stress in the presence of swell under moderate to strong conditions. J. Geophys. Res. 114, C12008 (2009). doi:10.1029/2009JC005389 · doi:10.1029/2009JC005389
[14] Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16(4), 661-667 (2014) · Zbl 1308.76035 · doi:10.1007/s00021-014-0175-4
[15] Gerkema, T., Zimmerman, J.T.F., Maas, L.R.M., van Haren, H.: Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46, 1-33 (2004)
[16] Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B/Fluids 38, 18-21 (2013) · Zbl 1297.86002 · doi:10.1016/j.euromechflu.2012.10.001
[17] Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the \[f\] f-plane. Discrete Contin. Dyn. Syst. 35(3), 909-916 (2015) · Zbl 1304.35698 · doi:10.3934/dcds.2015.35.909
[18] Henry, D., Matioc, A.-V.: On the existence of equatorial wind waves. Nonlinear Anal. TMA. 101, 113-123 (2014) · Zbl 1286.86010 · doi:10.1016/j.na.2014.01.018
[19] Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \[f\] f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190-195 (2015) · Zbl 1330.35458 · doi:10.1016/j.nonrwa.2015.02.002
[20] Kessler, W.S., McPhaden, M.J.: Oceanic equatorial waves and the 1991-1993, El Niño. J. Clim. 8, 1757-1774 (1995) · doi:10.1175/1520-0442(1995)008<1757:OEWATE>2.0.CO;2
[21] LeBlond, P.H., Mysak, L.A.: Waves in the Ocean. Elsevier, Amsterdam (1978)
[22] Martin, C.I.: Dynamics of the thermocline in the equatorial region of the Pacific Ocean. J. Nonlinear Math. Phys. 22(4), 516-522 (2015) · Zbl 1420.35216 · doi:10.1080/14029251.2015.1113049
[23] Matioc, A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A Math. Theor. 45, 365501 (2012) · Zbl 1339.86001
[24] Matioc, A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92(11), 2254-2261 (2013) · Zbl 1292.76018 · doi:10.1080/00036811.2012.727987
[25] McCreary, J.P.: Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech. 17, 359-409 (1985) · Zbl 0596.76115 · doi:10.1146/annurev.fl.17.010185.002043
[26] Proehl, J.A., McPhaden, M.J., Rothstein, L.M.: A numerical approach to equatorial oceanic wave-mean flow interactions. In: O’Brien, J.J. (ed.) Advanced Physical Oceanographic Modelling. D. Reidel Publishing Company, Dordrecht (1986)
[27] Stommel, H.: Wind drift near the equator. Deep-Sea Res. 6, 298-302 (1960)
[28] Wenegrat, J.O., McPhaden, M.J., Lien, R.C.: Wind stress and near-surface shear in the equatorial Atlantic Ocean. Geophys. Res. Lett. 41, 1226-1231 (2014) · doi:10.1002/2013GL059149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.