×

On the automorphisms of the nonsplit Cartan modular curves of prime level. (English) Zbl 1365.14034

The main results in the paper under review are the following: if \(p\) is a prime and \(p\geq29\), all the automorphisms of the modular curve \(X_{ns}(p)\) associated to a nonsplit Cartan subgroup of \(\text{GL}_2(\mathbb{F}_p)\), preserve the cusps. Moreover, if there exists an exceptional automorphism, that is, non-modular, defined over \(\mathbb{Q}\) then the modular curve associated to the normalizer of a nonsplit Cartan subgroup \(X^{+}_{ns}(p)\) has a non-CM rational point.
The techniques to prove these results are mainly bases on the work of M. Baker and Y. Hasegawa [J. Number Theory 100, No. 1, 72–87 (2003; Zbl 1088.11049)]; M. A. Kenku and F. Momose [Compos. Math. 65, No. 1, 51–80 (1988; Zbl 0686.14035)]; and A. P. Ogg [Bull. Soc. Math. Fr. 102, 449–462 (1974; Zbl 0314.10018)]. The new ideas brought by the author are bounding by a quadratic field the field of definition of the endomorphisms coming from the CM-part of the Jacobian of \(X_{0}(p^2)\) and proving that there is no CM-point in \(X_{ns}(p)\) defined over \(\mathbb{Q}(\zeta_p)\).
The interest in nonsplit Cartan modular curves comes mainly from Serre’s uniformity conjecture. Which is equivalent to assert that for almost all \(p\) and for every maximal subgroup \(H\) of \(\text{GL}_2(\mathbb{F}_p)\), the modular curve \(X_H\) has no rational points except the cusps and the points associated to elliptic curves with complex multiplication. The only case left to prove concerns modular curves \(X^{+}_{ns}(p)\) associated to the normalizer of a nonsplit Cartan subgroup.

MSC:

14G35 Modular and Shimura varieties
11G05 Elliptic curves over global fields
11F06 Structure of modular groups and generalizations; arithmetic groups
11G15 Complex multiplication and moduli of abelian varieties
14G05 Rational points
14H37 Automorphisms of curves
14H52 Elliptic curves

References:

[1] DOI: 10.1017/S0027763000014471 · Zbl 0225.14015 · doi:10.1017/S0027763000014471
[2] DOI: 10.1006/jabr.2001.9024 · Zbl 1007.20045 · doi:10.1006/jabr.2001.9024
[3] DOI: 10.1007/978-3-663-14060-3 · doi:10.1007/978-3-663-14060-3
[4] DOI: 10.2307/1970941 · Zbl 0305.14016 · doi:10.2307/1970941
[5] DOI: 10.1007/BF01420295 · doi:10.1007/BF01420295
[6] DOI: 10.1007/978-3-540-37855-6_4 · doi:10.1007/978-3-540-37855-6_4
[7] Ogg, Bull. Soc. Math. France 102 pp 449– (1974) · Zbl 0314.10018 · doi:10.24033/bsmf.1789
[8] DOI: 10.1016/j.jalgebra.2014.05.036 · Zbl 1330.14049 · doi:10.1016/j.jalgebra.2014.05.036
[9] DOI: 10.1007/978-1-4757-5927-3 · doi:10.1007/978-1-4757-5927-3
[10] Kenku, Compos. Math. 65 pp 51– (1988)
[11] Conway, Groups, Difference Sets, and the Monster (Columbus, OH, 1993) pp 327– (1996)
[12] Elkies, Compos. Math. 74 pp 203– (1990)
[13] DOI: 10.1112/S0024611598000392 · Zbl 0903.11019 · doi:10.1112/S0024611598000392
[14] DOI: 10.4310/MRL.2000.v7.n2.a1 · Zbl 0968.14024 · doi:10.4310/MRL.2000.v7.n2.a1
[15] DOI: 10.1016/S0022-314X(02)00120-8 · Zbl 1088.11049 · doi:10.1016/S0022-314X(02)00120-8
[16] Diamond, A First Course in Modular Forms (2005) · Zbl 1062.11022
[17] DOI: 10.1353/ajm.2005.0037 · Zbl 1127.11041 · doi:10.1353/ajm.2005.0037
[18] DOI: 10.1016/j.jnt.2010.06.005 · Zbl 1236.11094 · doi:10.1016/j.jnt.2010.06.005
[19] DOI: 10.1155/S1073792896000621 · Zbl 0878.14019 · doi:10.1155/S1073792896000621
[20] DOI: 10.1007/978-0-387-09494-6 · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
[21] DOI: 10.1007/978-1-4612-0851-8 · doi:10.1007/978-1-4612-0851-8
[22] DOI: 10.2307/1970859 · Zbl 0255.10032 · doi:10.2307/1970859
[23] DOI: 10.2969/jmsj/01010001 · Zbl 0081.07603 · doi:10.2969/jmsj/01010001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.