×

A new approach for solving a model for HIV infection of \(\mathrm{CD}4^{+}\) T-cells arising in mathematical chemistry using wavelets. (English) Zbl 1364.92026

Summary: In this paper, the Legendre wavelet method for solving a model for HIV infection of \(\mathrm{CD}4^{+}\) T-cells is studied. The properties of Legendre wavelets and its operational matrices are first presented and then are used to convert into algebraic equations. Also the convergence and error analysis for the proposed technique have been discussed. Illustrative examples have been given to demonstrate the validity and applicability of the technique. The efficiency of the proposed method has been compared with other traditional methods and it is observed that the Legendre wavelet method is more convenient than the other methods in terms of applicability, efficiency, accuracy, error, and computational effort.

MSC:

92C60 Medical epidemiology
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] Perelson, AS; Castillo-Chavez, C. (ed.), Modelling the interaction of the immune system with HIV, 350 (1989), Berlin · doi:10.1007/978-3-642-93454-4_17
[2] A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD \[4^+\]+ T-cells. Math. Biosci. 114, 81 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[3] R.V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD \[4^+\]+ T-cells. Math. Biosci. 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[4] S. Yüzbas, A numerical approach to solve the model for HIV infection of CD \[4^+\]+ T cells. Appl. Math. Model. 36, 5876-5890 (2012) · Zbl 1349.92098 · doi:10.1016/j.apm.2011.12.021
[5] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev. 41(1), 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[6] L. Wang, M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD \[4^+\]+ T cells. Math. Biosci. 200, 44-57 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[7] B. Asquith, C.R.M. Bangham, The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology. J. Theor. Biol. 222, 53-69 (2003) · Zbl 1464.92061 · doi:10.1016/S0022-5193(03)00013-4
[8] M. Nowak, R. May, Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math. Biosci. 106, 1-21 (1991) · Zbl 0738.92008 · doi:10.1016/0025-5564(91)90037-J
[9] W. Liancheng, Y.L. Michael, Mathematical analysis of the global dynamics of a model for HIV infection of CD \[4^+\]+ T cells. Math. Biosci. 200, 44-57 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[10] B. Asquith, C.R.M. Bangham, The dynamics of T-cell fratricide: application of a robust approach to mathematical modeling in immunology. J Theor. Biol. 222, 53-69 (2003) · Zbl 1464.92061 · doi:10.1016/S0022-5193(03)00013-4
[11] A.A.M. Arafa, S.Z. Rida, M. Khalil, Fractional modeling dynamics of HIV and CD \[4^+\]+ T-cells during primary infection. Nonlinear Biomed Phys. 6(1), 1-7 (2012) · Zbl 1235.34014
[12] M.Y. Ongun, The Laplace adomian decomposition method for solving a model for HIV infection of CD \[4^+\]+ T cells. Math. Comput. Model. 53(5-6), 597-603 (2011) · Zbl 1217.65164 · doi:10.1016/j.mcm.2010.09.009
[13] S. Yuzbasi, A numerical approach to solve the model for HIV infection of CD \[4^+\]+ T cells. Appl. Math. Model. 36(12), 5876-5890 (2012) · Zbl 1349.92098 · doi:10.1016/j.apm.2011.12.021
[14] N. Dogan, Numerical treatment of the model for HIV infection of CD \[4^+\]+ T cells by using multistep Laplace adomian decomposition method. Discrete Dyn. Nat. Soc., Article ID 976352, 11 pages (2012) · Zbl 1248.65109
[15] M. Merdan, Homotopy perturbation method for solving a Model for HIV infection of CD \[4^+\]+ T cells. Istanb. Commerce Univ. J. Sci. 6, 39-52 (2007)
[16] Y. Khan, Q. Wu, H. Vazquez-Leal, An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23, 677-682 (2013) · doi:10.1007/s00521-012-0952-z
[17] M. Ghoreishi, AIBMd Ismail, A.K. Alomari, Application of the homotopy analysis method for solving a model for HIV infection of CD \[4^+\]+ T-cells. Math. Comput. Model. 54, 3007-3015 (2011) · Zbl 1235.65095 · doi:10.1016/j.mcm.2011.07.029
[18] M.Y. Ongun, The Laplace adomian decomposition method for solving a model for HIV infection of CD \[4^+\]+ T cells. Math. Comput. Model. 53, 597-603 (2011) · Zbl 1217.65164 · doi:10.1016/j.mcm.2010.09.009
[19] M. Merdan, A. Gökdogan, A. Yildirim, On the numerical solution of the model for HIV infection of CD \[4^+\]+ T cells. Comput. Math. Appl. 62, 118-123 (2011) · Zbl 1228.65137 · doi:10.1016/j.camwa.2011.04.058
[20] V.K. Srivastava, M.K. Awasthi, S. Kumar, Numerical approximation for HIV infection of CD \[4^+\]+ T cells mathematical model. Ain Shams Eng. J. 5(2), 625-629 (2014) · doi:10.1016/j.asej.2013.12.012
[21] A. Gökdogan, M. Merdan, A multistage Homotopy perturbation method for solving human T-cell lymphotropic virus I (HTLV-I) infection of CD \[4^+\]+ T-cells model. Middle East J. Sci. Res. 9(4), 503-509 (2011)
[22] A. Gökdogan, A. Yildirimb, M. Merdan, Solving a fractional order model of HIV infection of CD \[4^+\]+ T cells. Math. Comput. Model. 54, 2132-2138 (2011) · Zbl 1235.34014 · doi:10.1016/j.mcm.2011.05.022
[23] M. Razzagi, S. Yousefi, Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Math. Comput. Model. 34, 45-54 (2001) · Zbl 0991.65053 · doi:10.1016/S0895-7177(01)00048-6
[24] S. Yousefi, M. Razzagi, Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 70, 1-8 (2005) · Zbl 1205.65342 · doi:10.1016/j.matcom.2005.02.035
[25] S.A. Yousefi, Legendre scaling function for solving generalized Emden-Fowler equation. Int. J. Inf. Sys. Sci. 3, 243-250 (2007) · Zbl 1118.65084
[26] S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type. Appl. Math. Comput. 181, 1417-1422 (2006) · Zbl 1105.65080 · doi:10.1016/j.amc.2006.02.031
[27] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, The Legendre wavelet method for solving initial value problems of Bratu-type. Comput. Math. Appl. 63, 1287-1295 (2012) · Zbl 1247.65180 · doi:10.1016/j.camwa.2011.12.069
[28] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, K. Kannan, Convergence analysis of Legendre wavelets method for solving Fredholm integral equations. Appl. Math. Sci. 6, 2289-2296 (2012) · Zbl 1266.65211
[29] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, Legendre approximation solution for a class of higher-order Volterra integro-differential equations. Ain Shams Eng. J. 3, 417-422 (2012) · doi:10.1016/j.asej.2012.04.007
[30] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, Legendre wavelets based approximation method for Cauchy problems. Appl. Math. Sci. 6, 6281-6286 (2012) · Zbl 1268.65141
[31] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, Legendre wavelets based approximation method for solving advection problems. Ain Shams Eng. J. 4, 925-932 (2013) · doi:10.1016/j.asej.2013.02.008
[32] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, K. Kannan, Wavelet solution for class of nonlinear integro-diferential equations. Indian J. Sci. Technol. 6(6), 4670-4677 (2013)
[33] S.G. Venkatesh, S.K. Ayyaswamy, S. Raja Balachandar, K. Kannan, Legendre wavelet method for the singular system of transistor circuits. Int. J. Appl. Eng. Res. 9, 213-221 (2014)
[34] M. Razzagi, S. Yousefi, The Legendre wavelet operational matrix of integration. Int. J. Syst. Sci. 32(4), 495-502 (2001) · Zbl 1006.65151 · doi:10.1080/00207720120227
[35] J.S. Gu, W.S. Jiang, The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27, 623-628 (1996) · Zbl 0875.93116 · doi:10.1080/00207729608929258
[36] M. Behroozifar, S.A. Yousefi, A. Ranjbar, Numerical solution of optimal control of time-varying singular systems via operational matrices. Int. J. Eng. 27, 523-532 (2014)
[37] P.A. Regalia, S.K. Mitra, Kronecker product, unitary matrices and signal processing applications. SIAM 31, 586-613 (1989) · Zbl 0687.15010 · doi:10.1137/1031127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.