×

DEA environmental assessment. II: A literature study. (English) Zbl 1364.90005

Hwang, Shiuh-Nan (ed.) et al., Handbook of operations analytics using data envelopment analysis. New York, NY: Springer (ISBN 978-1-4899-7703-8/hbk; 978-1-4899-7705-2/ebook). International Series in Operations Research & Management Science 239, 445-481 (2016).
Summary: This chapter systematically summarizes previous research efforts, including concepts and methodologies, on DEA environmental assessment applied to energy in the past three decades. Industrial developments are very important for all nations in terms of their economic prosperities. The problem is that the development produces various pollutions on air, water and others types of contaminations, all of which are usually associated with our health problems and climate changes. Thus, it is necessary for us to think how to make a balance between economic success and pollution mitigation in order to maintain a high level of social and corporate sustainability in the world. It is widely considered among researchers and practitioners that DEA is one of methodologies to examine the level of sustainability. The purpose of this chapter is to describe the importance of DEA in assessing unified (operational and environmental) performance of various entities in public and private sectors by summarizing previous research efforts on environmental assessment. The literature survey in this chapter covers 407 articles on DEA applications in energy and environment. It is true that DEA is not a perfect methodology, rather being an approximation methodology for performance assessment. The methodology has strengths and drawbacks in applications. Therefore, it is very important for us to carefully use DEA for guiding large policy and business strategies regarding the global warming and climate change. An underlying premise of this study is that technology innovation in engineering may solve the pollution and climate problem by linking it with economic and business concerns. The DEA provides such a linkage between engineering and social science, so enhancing the practicality in mitigating environmental pollutions. It is envisioned that the literature study, along with a summary on conceptual and methodological developments discussed in Chap. 16, provides researchers and individuals who are interested in social and corporate sustainability with analytical and methodological guidelines for their future research works on DEA environmental assessment.
For part I, see [ibid. 413–444 (2016; Zbl 1364.90217)].
For the entire collection see [Zbl 1367.90001].

MSC:

90-03 History of operations research and mathematical programming
01A90 Bibliographic studies
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)

Citations:

Zbl 1364.90217

Software:

sfa
Full Text: DOI

References:

[1] Abbott, M. (2005). Determining levels of productivity and efficiency in the electricity industry. The Electricity Journal, 18, 62–72. · doi:10.1016/j.tej.2005.08.004
[2] Abbott, M. (2006). The productivity and efficiency of the Australian electricity supply industry. Energy Economics, 28, 444–454. · doi:10.1016/j.eneco.2005.10.007
[3] Agrell, P. J., & Bogetoft, P. (2005). Economic and environmental efficiency of district heating plants. Energy Policy, 33, 1351–1362. · doi:10.1016/j.enpol.2003.12.011
[4] Al-Salem, S. M. (2015). Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view. Energy, 81, 575–587. · doi:10.1016/j.energy.2014.12.075
[5] Aparicio, J., Pastor, J. T., & Zofio, J. L. (2015). How to properly decompose economic efficiency using technical and allocative criteria with non-homothetic DEA technologies. European Journal of Operational Research, 240, 882–891. · Zbl 1338.90196 · doi:10.1016/j.ejor.2014.08.012
[6] Apergis, N., Aye, G. C., Barros, C. P., Gupta, R., & Wanke, P. (2015). Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs. Energy Economics, 51, 45–53. · doi:10.1016/j.eneco.2015.05.022
[7] Arabi, B., Munisamy, S., Emrouznejad, A., & Shadman, F. (2014). Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist-Luenberger Index measurement. Energy Policy, 68, 132–145. · doi:10.1016/j.enpol.2014.01.016
[8] Arcelus, F. J., & Arocena, P. (2005). Productivity differences across OECD countries in the presence of environmental constraints. Journal of Operational Research Society, 56, 1352. · Zbl 1099.90547 · doi:10.1057/palgrave.jors.2601942
[9] Arocena, P. (2008). Cost and quality gains from diversification and vertical integration in the electricity industry: A DEA approach. Energy Economics, 30, 39–58. · doi:10.1016/j.eneco.2006.09.001
[10] Athanassopoulos, A. D., Lambroukos, N., & Seiford, L. (1999). Data envelopment scenario analysis for setting targets to electricity generating plants. European Journal of Operational Research, 115, 413–428. · doi:10.1016/S0377-2217(98)00205-7
[11] Azadeh, A., Amalnick, M. S., Ghaderi, S. F., & Asadzadeh, S. M. (2007). An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors. Energy Policy, 35, 3792–3806. · doi:10.1016/j.enpol.2007.01.018
[12] Azadeh, A., Amalnick, M. S., Ghaderi, S. F., & Asadzadeh, S. M. (2008). Corrigendum to ”An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors?” [Energy Policy 35 (2007) 3792-3806]. Energy Policy, 36, 2770. · doi:10.1016/j.enpol.2007.01.029
[13] Azadeh, A., Ghaderi, S. F., & Omrani, H. (2009a). A deterministic approach for performance assessment and optimization of power distribution units in Iran. Energy Policy, 37, 274–280. · doi:10.1016/j.enpol.2008.08.027
[14] Azadeh, A., Ghaderi, S. F., Omrani, H., & Eivazy, H. (2009b). An integrated DEA-COLS-SFA algorithm for optimization and policy making of electricity distribution units. Energy Policy, 37, 2605–2618. · doi:10.1016/j.enpol.2009.02.021
[15] Azadeh, A., & Mousavi Ahranjani, P. (2014). The impact of job security, satisfaction and stress on performance assessment and optimization of generation companies. Journal of Loss Prevention in the Process Industries, 32, 343–348. · doi:10.1016/j.jlp.2014.10.002
[16] Azadeh, A., Saberi, M., Asadzadeh, S. M., Hussain, O. K., & Saberi, Z. (2013). A neuro-fuzzy-multivariate algorithm for accurate gas consumption estimation in South America with noisy inputs. International Journal of Electrical Power & Energy Systems, 46, 315–325. · doi:10.1016/j.ijepes.2012.10.013
[17] Azadi, M., Jafarian, M., Farzipoor Saen, R., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & Operations Research, 54, 274–285. · Zbl 1348.90064 · doi:10.1016/j.cor.2014.03.002
[18] Azadi, M., Shabani, A., Khodakarami, M., & Farzipoor Saen, R. (2014). Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers. Transportation Research Part E: Logistics and Transportation Review, 70, 324–338. · doi:10.1016/j.tre.2014.07.009
[19] Bagdadioglu, N., Waddams Price, C. M., & Weyman-Jones, T. G. (1996). Efficiency and ownership in electricity distribution: A non-parametric model of the Turkish experience. Energy Economics, 18, 1–23. · doi:10.1016/0140-9883(95)00042-9
[20] Bampatsou, C., Papadopoulos, S., & Zervas, E. (2013). Technical efficiency of economic systems of EU-15 countries based on energy consumption. Energy Policy, 55, 426–434. · doi:10.1016/j.enpol.2012.12.021
[21] Banaeian, N., Omid, M., & Ahmadi, H. (2011). Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management, 52, 1020–1025. · doi:10.1016/j.enconman.2010.08.030
[22] Banaeian, N., & Zangeneh, M. (2011). Study on energy efficiency in corn production of Iran. Energy, 36, 5394–5402. · doi:10.1016/j.energy.2011.06.052
[23] Barla, P., & Perelman, S. (2005). Sulphur emissions and productivity growth in industrialized countries. Annals of Public and Cooperative Economics, 76, 275–300. · doi:10.1111/j.1370-4788.2005.00279.x
[24] Barros, C. P. (2008). Efficiency analysis of hydroelectric generating plants: A case study for Portugal. Energy Economics, 30, 59–75. · doi:10.1016/j.eneco.2006.10.008
[25] Barros, C. P., & Assaf, A. (2009). Bootstrapped efficiency measures of oil blocks in Angola. Energy Policy, 37, 4098–4103. · doi:10.1016/j.enpol.2009.05.007
[26] Barros, C. P., & Managi, S. (2009). Productivity assessment of Angola’s oil blocks. Energy, 34, 2009–2015. · doi:10.1016/j.energy.2009.08.016
[27] Barros, C. P., & Peypoch, N. (2008). Technical efficiency of thermoelectric power plants. Energy Economics, 30, 3118–3127. · doi:10.1016/j.eneco.2008.04.007
[28] Bevilacqua, M., & Braglia, M. (2002). Environmental efficiency analysis for ENI oil refineries. Journal of Cleaner Production, 10, 85–92. · doi:10.1016/S0959-6526(01)00022-1
[29] Bi, G.-B., Song, W., Zhou, P., & Liang, L. (2014). Does environmental regulation affect energy efficiency in China’s thermal power generation? Empirical evidence from a slacks-based DEA model. Energy Policy, 66, 537–546. · doi:10.1016/j.enpol.2013.10.056
[30] Bian, Y., He, P., & Xu, H. (2013). Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach. Energy Policy, 63, 962–971. · doi:10.1016/j.enpol.2013.08.051
[31] Bian, Y., Yan, S., & Xu, H. (2014). Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: A DEA approach. Resources, Conservation and Recycling, 83, 15–23. · doi:10.1016/j.resconrec.2013.11.010
[32] Bian, Y., & Yang, F. (2010). Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy, 38, 1909–1917. · doi:10.1016/j.enpol.2009.11.071
[33] Blancard, S., & Martin, E. (2014). Energy efficiency measurement in agriculture with imprecise energy content information. Energy Policy, 66, 198–208. · doi:10.1016/j.enpol.2013.10.071
[34] Blokhuis, E., Advokaat, B., & Schaefer, W. (2012). Assessing the performance of Dutch local energy companies. Energy Policy, 45, 680–690. · doi:10.1016/j.enpol.2012.03.021
[35] Blomberg, J., Henriksson, E., & Lundmark, R. (2012). Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach. Energy Policy, 42, 569–579. · doi:10.1016/j.enpol.2011.12.026
[36] Boubaker, K. (2012a). Renewable energy in upper North Africa: Present versus 202: Horizon perspectives optimization using a data envelopment analysis (DEA) framework. Renewable Energy, 43, 364–369. · doi:10.1016/j.renene.2011.11.049
[37] Boubaker, K. (2012b). A review on renewable energy conceptual perspectives in North Africa using a polynomial optimization scheme. Renewable and Sustainable Energy Reviews, 16, 4298–4302. · doi:10.1016/j.rser.2012.02.077
[38] Boyd, G. A., & McClelland, J. D. (1999). The Impact of environmental constraints on productivity improvement in integrated paper plants. Journal of Environmental Economics and Management, 38, 121–142. · Zbl 0932.91037 · doi:10.1006/jeem.1999.1082
[39] Boyd, G. A., & Pang, J. X. (2000). Estimating the linkage between energy efficiency and productivity. Energy Policy, 28, 289–296. · doi:10.1016/S0301-4215(00)00016-1
[40] Boyd, G. A., Tolley, G., & Pang, J. (2002). Plant level productivity, efficiency, and environmental performance of the container glass industry. Environmental and Resource Economics, 23, 29–43. · doi:10.1023/A:1020236517937
[41] Bozoğlu, M., & Ceyhan, V. (2009). Energy conversion efficiency of trout and sea bass production in the Black Sea, Turkey. Energy, 34, 199–204. · doi:10.1016/j.energy.2008.12.001
[42] Brännlund, R., Chung, Y., Färe, R., & Grosskopf, S. (1998). Emissions trading and profitability: The Swedish pulp and paper industry. Environmental and Resource Economics, 12, 345–356. · doi:10.1023/A:1008285813997
[43] Bretholt, A., & Pan, J.-N. (2013). Evolving the latent variable model as an environmental DEA technology. Omega, 41, 315–325. · doi:10.1016/j.omega.2012.04.001
[44] Burnett, R. D., & Hansen, D. R. (2008). Ecoefficiency: Defining a role for environmental cost management. Accounting, Organizations and Society, 33, 551–581. · doi:10.1016/j.aos.2007.06.002
[45] Byrnes, P., Färe, R., Grosskopf, S., & Knox Lovell, C. A. (1988). The effect of unions on productivity: U.S. surface mining of Coal. Management Science, 34, 1037–1053. · doi:10.1287/mnsc.34.9.1037
[46] Callens, I., & Tyteca, D. (1999). Towards indicators of sustainable development for firms: A productive efficiency perspective. Ecological Economics, 28, 41–53. · doi:10.1016/S0921-8009(98)00035-4
[47] Cambini, C., Croce, A., & Fumagalli, E. (2014). Output-based incentive regulation in electricity distribution: Evidence from Italy. Energy Economics, 45, 205–216. · doi:10.1016/j.eneco.2014.07.002
[48] Çelen, A. (2013). Efficiency and productivity (TFP) of the Turkish electricity distribution companies: An application of two-stage (DEA & amp; Tobit) analysis. Energy Policy, 63, 300–310. · doi:10.1016/j.enpol.2013.09.034
[49] Çelen, A., & Yalçın, N. (2012). Performance assessment of Turkish electricity distribution utilities: An application of combined FAHP/TOPSIS/DEA methodology to incorporate quality of service. Utilities Policy, 23, 59–71. · doi:10.1016/j.jup.2012.05.003
[50] Chang, M.-C. (2014). Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU. Energy Policy, 67, 648–655. · doi:10.1016/j.enpol.2013.11.051
[51] Chang, M.-C. (2015). Room for improvement in low carbon economies of G7 and BRICS countries based on the analysis of energy efficiency and environmental Kuznets curves. Journal of Cleaner Production, 99, 140–151. · doi:10.1016/j.jclepro.2015.03.002
[52] Chang, D.-S., Kuo, L.-C. R., & Chen, Y.-T. (2013a). Industrial changes in corporate sustainability performance: An empirical overview using data envelopment analysis. Journal of Cleaner Production, 56, 147–155. · doi:10.1016/j.jclepro.2011.09.015
[53] Chang, D.-S., & Yang, F.-C. (2011). Assessing the power generation, pollution control, and overall efficiencies of municipal solid waste incinerators in Taiwan. Energy Policy, 39, 651–663. · doi:10.1016/j.enpol.2010.10.038
[54] Chang, Y.-T., Zhang, N., Danao, D., & Zhang, N. (2013b). Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy, 58, 277–283. · doi:10.1016/j.enpol.2013.03.011
[55] Chauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking? An application of data envelopment analysis. Energy Conversion and Management, 47, 1063–1085. · doi:10.1016/j.enconman.2005.07.004
[56] Chen, J., Song, M., & Xu, L. (2015a). Evaluation of environmental efficiency in China using data envelopment analysis. Ecological Indicators, 52, 577–583. · doi:10.1016/j.ecolind.2014.05.008
[57] Chen, P.-C., Yu, M.-M., Chang, C.-C., Hsu, S.-H., & Managi, S. (2015b). The enhanced Russell-based directional distance measure with undesirable outputs: Numerical example considering CO2 emissions. Omega, 53, 30–40. · doi:10.1016/j.omega.2014.12.001
[58] Cherchye, L., De Rock, B., & Walheer, B. (2015). Multi-output efficiency with good and bad outputs. European Journal of Operational Research, 240, 872–881. · Zbl 1338.90198 · doi:10.1016/j.ejor.2014.07.028
[59] Chien, T., & Hu, J.-L. (2007). Renewable energy and macroeconomic efficiency of OECD and non-OECD economies. Energy Policy, 35, 3606–3615. · doi:10.1016/j.enpol.2006.12.033
[60] Chien, C.-F., Lo, F.-Y., & Lin, J. T. (2003). Using DEA to measure the relative efficiency of the service center and improve operation efficiency through reorganization. IEEE Transactions on Power Systems, 18, 366–373. · doi:10.1109/TPWRS.2002.807081
[61] Chitkara, P. (1999). A data envelopment analysis approach to evaluation of operational inefficiencies in power generating units: A case study of Indian power plants. IEEE Transactions on Power Systems, 14, 419–425. · doi:10.1109/59.761859
[62] Chiu, Y.-H., Huang, C.-W., & Ma, C.-M. (2011). Assessment of China transit and economic efficiencies in a modified value-chains DEA model. European Journal of Operational Research, 209, 95–103. · doi:10.1016/j.ejor.2010.05.010
[63] Chiu, Y.-H., Lee, J.-H., Lu, C.-C., Shyu, M.-K., & Luo, Z. (2012). The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model. Energy Policy, 51, 349–357. · doi:10.1016/j.enpol.2012.08.026
[64] Choi, Y., Zhang, N., & Zhou, P. (2012). Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Applied Energy, 98, 198–208. · doi:10.1016/j.apenergy.2012.03.024
[65] Chung, W. (2011). Review of building energy-use performance benchmarking methodologies. Applied Energy, 88, 1470–1479. · doi:10.1016/j.apenergy.2010.11.022
[66] Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51, 229–240. · doi:10.1006/jema.1997.0146
[67] Claggett, E. T., & Ferrier, G. D. (1998). The efficiency of TVA power distributors. Managerial and Decision Economics, 19, 365–376. · doi:10.1002/(SICI)1099-1468(199809)19:6<365::AID-MDE906>3.0.CO;2-O
[68] Cook, W. D., & Green, R. H. (2005). Evaluating power plant efficiency: A hierarchical model. Computers & Operations Research, 32, 813–823. · Zbl 1071.90544 · doi:10.1016/j.cor.2003.08.019
[69] Criswell, D. R., & Thompson, R. G. (1996). Data envelopment analysis of space and terrestrially-based large scale commercial power systems for earth: A prototype analysis of their relative economic advantages. Solar Energy, 56, 119–131. · doi:10.1016/0038-092X(95)00113-6
[70] Cui, Q., Kuang, H.-B., Wu, C.-Y., & Li, Y. (2014). The changing trend and influencing factors of energy efficiency: The case of nine countries. Energy, 64, 1026–1034. · doi:10.1016/j.energy.2013.11.060
[71] Cui, Q., & Li, Y. (2014). The evaluation of transportation energy efficiency: An application of three-stage virtual frontier DEA. Transportation Research Part D: Transport and Environment, 29, 1–11. · doi:10.1016/j.trd.2014.03.007
[72] Cui, Q., & Li, Y. (2015a). An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries. Applied Energy, 141, 209–217. · doi:10.1016/j.apenergy.2014.12.040
[73] Cui, Q., & Li, Y. (2015b). Evaluating energy efficiency for airlines: An application of VFB-DEA. Journal of Air Transport Management, 44–45, 34–41. · doi:10.1016/j.jairtraman.2015.02.008
[74] Dai, X., & Kuosmanen, T. (2014). Best-practice benchmarking using clustering methods: Application to energy regulation. Omega, 42, 179–188. · doi:10.1016/j.omega.2013.05.007
[75] de Castro Camioto, F., Mariano, E. B., & do Nascimento Rebelatto, D. A. (2014). Efficiency in Brazil’s industrial sectors in terms of energy and sustainable development. Environmental Science & Policy, 37, 50–60. · doi:10.1016/j.envsci.2013.08.007
[76] Diaz-Balteiro, L., Casimiro Herruzo, A., Martinez, M., & González-Pachón, J. (2006). An analysis of productive efficiency and innovation activity using DEA: An application to Spain’s wood-based industry. Forest Policy and Economics, 8, 762–773. · doi:10.1016/j.forpol.2005.06.004
[77] Duan, N., Guo, J.-P., & Xie, B.-C. (2016). Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach. Applied Energy, 162, 1552–1563. · doi:10.1016/j.apenergy.2015.02.066
[78] Dyckhoff, H., & Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132, 312–325. · Zbl 0979.90069 · doi:10.1016/S0377-2217(00)00154-5
[79] Ebrahimi, R., & Salehi, M. (2015). Investigation of CO2 emission reduction and improving energy use efficiency of button mushroom production using data envelopment analysis. Journal of Cleaner Production, 103, 112–119. · doi:10.1016/j.jclepro.2014.02.032
[80] Ederer, N. (2015). Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach. Renewable and Sustainable Energy Reviews, 42, 1034–1046. · doi:10.1016/j.rser.2014.10.071
[81] Erbetta, F., & Rappuoli, L. (2008). Optimal scale in the Italian gas distribution industry using data envelopment analysis. Omega, 36, 325–336. · doi:10.1016/j.omega.2006.01.003
[82] Ertürk, M., & Türüt-Aşık, S. (2011). Efficiency analysis of Turkish natural gas distribution companies by using data envelopment analysis method. Energy Policy, 39, 1426–1438. · doi:10.1016/j.enpol.2010.12.014
[83] Fallahi, A., Ebrahimi, R., & Ghaderi, S. F. (2011). Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study. Energy, 36, 6398–6405. · doi:10.1016/j.energy.2011.09.034
[84] Fang, C.-Y., Hu, J.-L., & Lou, T.-K. (2013). Environment-adjusted total-factor energy efficiency of Taiwan’s service sectors. Energy Policy, 63, 1160–1168. · doi:10.1016/j.enpol.2013.07.124
[85] Fang, H., Wu, J., & Zeng, C. (2009). Comparative study on efficiency performance of listed coal mining companies in China and the US. Energy Policy, 37, 5140–5148. · doi:10.1016/j.enpol.2009.07.027
[86] Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: Comment. European Journal of Operational Research, 157, 242–352. · Zbl 1080.90527 · doi:10.1016/S0377-2217(03)00191-7
[87] Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994a). Productivity developments in Swedish Hospitals: A Malmquist output index approach. Data envelopment analysis: Theory, methodology, and applications (pp. 253–272). Amsterdam: Springer, ISBN: 978-0-7923-9480-8. · Zbl 0862.90094 · doi:10.1007/978-94-011-0637-5_13
[88] Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71, 90–98. · doi:10.2307/1928055
[89] Färe, R., Grosskopf, S., Noh, D.-W., & Weber, W. (2005). Characteristics of a polluting technology: Theory and practice. Journal of Econometrics, 126, 469–492. · Zbl 1334.62211 · doi:10.1016/j.jeconom.2004.05.010
[90] Färe, R., Grosskopf, S., & Hernandez-Sancho, F. (2004). Environmental performance: An index number approach. Resource and Energy Economics, 26, 343–352. · doi:10.1016/j.reseneeco.2003.10.003
[91] Färe, R., Grosskopf, S., & Logan, J. (1983). The relative efficiency of Illinois electric utilities. Resources and Energy, 5, 349–367. · doi:10.1016/0165-0572(83)90033-6
[92] Färe, R., Grosskopf, S., & Logan, J. (1985). The relative performance of publicly-owned and privately-owned electric utilities. Journal of Public Economics, 26, 89–106. · doi:10.1016/0047-2727(85)90040-4
[93] Färe, R., Grosskopf, S., & Lovell, C. A. K. (1994b). Production frontiers. Cambridge: Cambridge University Press.
[94] Färe, R., Grosskopf, S., & Pasurka, C. (1986). Effects on relative efficiency in electric power generation due to environmental controls. Resources and Energy, 8, 167–184. · doi:10.1016/0165-0572(86)90016-2
[95] Färe, R., Grosskopf, S., & Pasurka, J. C. A. (2001). Accounting for air pollution emissions in measures of state manufacturing productivity growth. Journal of Regional Science, 41, 381–409. · doi:10.1111/0022-4146.00223
[96] Färe, R., Grosskopf, S., & Tyteca, D. (1996). An activity analysis model of the environmental performance of firms-application to fossil-fuel-fired electric utilities. Ecological Economics, 18, 161–175. · doi:10.1016/0921-8009(96)00019-5
[97] Färe, R., Grosskopf, S., Yaisawarng, S., Li, S. K., & Wang, Z. (1990). Productivity growth in Illinois electric utilities. Resources and Energy, 12, 383–398. · doi:10.1016/0165-0572(90)90030-M
[98] Feng, C., Chu, F., Ding, J., Bi, G., & Liang, L. (2015). Carbon emissions abatement (CEA) allocation and compensation schemes based on DEA. Omega, 53, 78–89. · doi:10.1016/j.omega.2014.12.005
[99] Ferrier, G. D., & Hirschberg, J. G. (1992). Climate control efficiency. The Energy Journal, 13, 37–54. · doi:10.5547/ISSN0195-6574-EJ-Vol13-No1-3
[100] Fleishman, R., Alexander, R., Bretschneider, S., & Popp, D. (2009). Does regulation stimulate productivity? The effect of air quality policies on the efficiency of US power plants. Energy Policy, 37, 4574–4582. · doi:10.1016/j.enpol.2009.06.012
[101] Galindo, P., Schäffer, A., Brechtel, K., Unterberger, S., & Scheffknecht, G. (2012). Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions. Fuel, 101, 2–8. · doi:10.1016/j.fuel.2011.02.005
[102] Ghiasi, M. M., & Mohammadi, A. H. (2014). Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions. Journal of Natural Gas Science and Engineering, 18, 39–46. · doi:10.1016/j.jngse.2014.01.005
[103] Ghulam, Y., & Jaffry, S. (2015). Efficiency and productivity of the cement industry: Pakistani experience of deregulation and privatisation. Omega, 54, 101–115. · doi:10.1016/j.omega.2015.01.013
[104] Giannakis, D., Jamasb, T., & Pollitt, M. (2005). Benchmarking and incentive regulation of quality of service: An application to the UK electricity distribution networks. Energy Policy, 33, 2256–2271. · doi:10.1016/j.enpol.2004.04.021
[105] Golany, B., Roll, Y., & Rybak, D. (1994). Measuring efficiency of power plants in Israel by data envelopment analysis. IEEE Transactions on Engineering Management, 41, 29–301. · doi:10.1109/17.310144
[106] Gómez-Calvet, R., Conesa, D., Gómez-Calvet, A. R., & Tortosa-Ausina, E. (2014). Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures? Applied Energy, 132, 137–154. · doi:10.1016/j.apenergy.2014.06.053
[107] González, E., Cárcaba, A., & Ventura, J. (2015). How car dealers adjust prices to reach the product efficiency frontier in the Spanish automobile market. Omega, 51, 38–48. · doi:10.1016/j.omega.2014.08.005
[108] Goto, M., Otsuka, A., & Sueyoshi, T. (2014). DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries. Energy, 66, 535–549. · doi:10.1016/j.energy.2013.12.020
[109] Goto, M., & Sueyoshi, T. (2009a). Financial ratio analysis: An application to US Energy Industry (Productivity, efficiency, and economic growth in the Asia-Pacific Region). Berlin: Physica-Verlag HD.
[110] Goto, M., & Sueyoshi, T. (2009b). Productivity growth and deregulation of Japanese electricity distribution. Energy Policy, 37, 3130–3138. · doi:10.1016/j.enpol.2009.04.005
[111] Goto, M., & Tsutsui, M. (1998). Comparison of productive and cost efficiencies among Japanese and US electric utilities. Omega, 26, 177–194. · doi:10.1016/S0305-0483(97)00073-X
[112] Gouveia, M. C., Dias, L. C., Antunes, C. H., Boucinha, J., & Inácio, C. F. (2015). Benchmarking of maintenance and outage repair in an electricity distribution company using the value-based DEA method. Omega, 53, 104–114. · doi:10.1016/j.omega.2014.12.003
[113] Grigoroudis, E., Petridis, K., & Arabatzis, G. (2014). RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks. Renewable Energy, 71, 113–122. · doi:10.1016/j.renene.2014.05.001
[114] Guo, X.-D., Zhu, L., Fan, Y., & Xie, B.-C. (2011). Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy, 39, 2352–2360. · doi:10.1016/j.enpol.2011.01.055
[115] Hampf, B., & Rødseth, K. L. (2015). Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective. Energy Economics, 50, 140–153. · doi:10.1016/j.eneco.2015.04.001
[116] Han, Y., Geng, Z., Zhu, Q., & Qu, Y. (2015). Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry. Energy, 83, 685–695. · doi:10.1016/j.energy.2015.02.078
[117] Hang, Y., Sun, J., Wang, Q., Zhao, Z., & Wang, Y. (2015). Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities. Economic Modeling, 49, 46–52. · doi:10.1016/j.econmod.2015.04.001
[118] Hattori, T., Jamasb, T., & Pollitt, M. (2005). Electricity distribution in the UK and Japan: A comparative efficiency analysis 1985-1998. The Energy Journal, 26, 23–47. · doi:10.5547/ISSN0195-6574-EJ-Vol26-No2-2
[119] Hawdon, D. (2003). Efficiency, performance and regulation of the international gas industry–A bootstrap DEA approach. Energy Policy, 31, 1167–1178. · doi:10.1016/S0301-4215(02)00218-5
[120] He, X. (2015). Regional differences in China’s CO2 abatement cost. Energy Policy, 80, 145–152. · doi:10.1016/j.enpol.2015.01.044
[121] He, F., Zhang, Q., Lei, J., Fu, W., & Xu, X. (2013). Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs. Energy Policy, 54, 204–213. · doi:10.1016/j.enpol.2012.11.020
[122] Hernández-Sancho, F., Molinos-Senante, M., & Sala-Garrido, R. (2011). Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Science of the Total Environment, 409, 2693–2699. · doi:10.1016/j.scitotenv.2011.04.018
[123] Hernández-Sancho, F., Picazo-Tadeo, A., & Reig-Martinez, E. (2000). Efficiency and environmental regulation. Environmental and Resource Economics, 15, 365–378. · doi:10.1023/A:1008359714729
[124] Hernández-Sancho, F., & Sala-Garrido, R. (2009). Technical efficiency and cost analysis in wastewater treatment processes: A DEA approach. Desalination, 249, 230–234. · doi:10.1016/j.desal.2009.01.029
[125] Herrala, M. E., Huotari, H., & Haapasalo, H. J. O. (2012). Governance of Finnish waterworks–A DEA comparison of selected models. Utilities Policy, 20, 64–70. · doi:10.1016/j.jup.2011.11.005
[126] Honma, S., & Hu, J.-L. (2008). Total-factor energy efficiency of regions in Japan. Energy Policy, 36, 821–833. · doi:10.1016/j.enpol.2007.10.026
[127] Honma, S., & Hu, J.-L. (2009). Total-factor energy productivity growth of regions in Japan. Energy Policy, 37, 3941–3950. · doi:10.1016/j.enpol.2009.04.034
[128] Honma, S., & Hu, J.-L. (2014a). Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis. Applied Energy, 119, 67–78. · doi:10.1016/j.apenergy.2013.12.049
[129] Honma, S., & Hu, J.-L. (2014b). A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions. Energy, 78, 732–739. · doi:10.1016/j.energy.2014.10.066
[130] Houshyar, E., Azadi, H., Almassi, M., Sheikh Davoodi, M. J., & Witlox, F. (2012). Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling. Energy, 44, 672–681. · doi:10.1016/j.energy.2012.05.025
[131] Hu, J.-L., & Kao, C.-H. (2007). Efficient energy-saving targets for APEC economies. Energy Policy, 35, 373–382. · doi:10.1016/j.enpol.2005.11.032
[132] Hu, J. L., & Lee, Y. C. (2008). Efficient three industrial waste abatements for regions in China. International Journal of Sustainable Development and World Ecology, 15, 132–144. · doi:10.1080/13504500809469778
[133] Hu, J.-L., Lio, M.-C., Yeh, F.-Y., & Lin, C.-H. (2011). Environment-adjusted regional energy efficiency in Taiwan. Applied Energy, 88, 2893–2899. · doi:10.1016/j.apenergy.2011.01.068
[134] Hu, J., Liu, J., Yu, J., & Dai, G. (2013). CO2 absorption into highly concentrated DEA solution flowing over a vertical plate with rectangular windows. International Journal of Greenhouse Gas Control, 19, 13–18. · doi:10.1016/j.ijggc.2013.08.007
[135] Hu, J.-L., & Wang, S.-C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34, 3206–3217. · doi:10.1016/j.enpol.2005.06.015
[136] Huang, C.-W., Chiu, Y.-H., Fang, W.-T., & Shen, N. (2014). Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach. Energy Policy, 74, 547–556. · doi:10.1016/j.enpol.2014.06.023
[137] Huang, R., & Li, Y. (2013). Undesirable input-output two-phase DEA model in an environmental performance audit. Mathematical and Computer Modelling, 58, 971–979. · doi:10.1016/j.mcm.2012.10.001
[138] Huang, J. P., Poh, K. L., & Ang, B. W. (1995). Decision analysis in energy and environmental modeling. Energy, 20, 843–855. · doi:10.1016/0360-5442(95)00036-G
[139] Iglesias, G., Castellanos, P., & Seijas, A. (2010). Measurement of productive efficiency with frontier methods: A case study for wind farms. Energy Economics, 32, 1199–1208. · doi:10.1016/j.eneco.2010.03.004
[140] Iribarren, D., Martín-Gamboa, M., & Dufour, J. (2013). Environmental benchmarking of wind farms according to their operational performance. Energy, 61, 589–597. · doi:10.1016/j.energy.2013.09.005
[141] Iribarren, D., Vázquez-Rowe, I., Rugani, B., & Benetto, E. (2014). On the feasibility of using energy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy. Energy, 67, 527–537. · doi:10.1016/j.energy.2014.01.109
[142] Jamasb, T., Nillesen, P., & Pollitt, M. (2004). Strategic behavior under regulatory benchmarking. Energy Economics, 26, 825–843. · doi:10.1016/j.eneco.2004.04.029
[143] Jamasb, T., & Pollitt, M. (2000). Benchmarking and regulation: International electricity experience. Utilities Policy, 9, 107–130. · doi:10.1016/S0957-1787(01)00010-8
[144] Jamasb, T., & Pollitt, M. (2003). International benchmarking and regulation: An application to European electricity distribution utilities. Energy Policy, 31, 1609–1622. · doi:10.1016/S0301-4215(02)00226-4
[145] Jaraite, J., & Di Maria, C. (2012). Efficiency, productivity and environmental policy: A case study of power generation in the EU. Energy Economics, 34, 1557–1568. · doi:10.1016/j.eneco.2011.11.017
[146] Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10, 281–311. · doi:10.1016/j.rser.2004.09.004
[147] Jin, J., Zhou, D., & Zhou, P. (2014). Measuring environmental performance with stochastic environmental DEA: The case of APEC economies. Economic Modelling, 38, 80–86. · doi:10.1016/j.econmod.2013.12.017
[148] Kashani, H. A. (2005a). Regulation and efficiency: An empirical analysis of the United Kingdom continental shelf petroleum industry. Energy Policy, 33, 915–925. · doi:10.1016/j.enpol.2003.10.014
[149] Kashani, H. A. (2005b). State intervention causing inefficiency: An empirical analysis of the Norwegian Continental Shelf. Energy Policy, 33, 1998–2009. · doi:10.1016/j.enpol.2004.03.020
[150] Keirstead, J. (2013). Benchmarking urban energy efficiency in the UK. Energy Policy, 63, 575–587. · doi:10.1016/j.enpol.2013.08.063
[151] Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013a). Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy, 58, 588–593. · doi:10.1016/j.energy.2013.06.030
[152] Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013b). Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy, 55, 676–682. · doi:10.1016/j.energy.2013.04.021
[153] Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013c). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333–338. · doi:10.1016/j.energy.2013.01.028
[154] Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A non-parametric data envelopment analysis approach for improving energy efficiency of grape production. Energy, 63, 189–194. · doi:10.1016/j.energy.2013.09.021
[155] Kim, K., & Kim, Y. (2012). International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition. Energy Economics, 34, 1724–1741. · doi:10.1016/j.eneco.2012.02.009
[156] Kim, K.-T., Lee, D. J., Park, S.-J., Zhang, Y., & Sultanov, A. (2015). Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis. Renewable and Sustainable Energy Reviews, 47, 694–702. · doi:10.1016/j.rser.2015.03.034
[157] Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154, 437–446. · Zbl 1146.91327 · doi:10.1016/S0377-2217(03)00180-2
[158] Korhonen, P., & Syrjänen, M. (2003). Evaluation of cost efficiency in Finnish electricity distribution. Annals of Operations Research, 121, 105–122. · Zbl 1037.91540 · doi:10.1023/A:1023355202795
[159] Kounetas, K. (2015). Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries. Energy Policy, 83, 277–287. · doi:10.1016/j.enpol.2015.01.036
[160] Kulshreshtha, M., & Parikh, J. K. (2002). Study of efficiency and productivity growth in opencast and underground coal mining in India: A DEA analysis. Energy Economics, 24, 439–453. · doi:10.1016/S0140-9883(02)00025-7
[161] Kumar, S. (2006). Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index. Ecological Economics, 56, 280–293. · doi:10.1016/j.ecolecon.2005.02.004
[162] Kumar Mandal, S., & Madheswaran, S. (2010). Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy, 38, 1108–1118. · doi:10.1016/j.enpol.2009.10.063
[163] Kuosmanen, T., Saastamoinen, A., & Sipiläinen, T. (2013). What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods. Energy Policy, 61, 740–750. · doi:10.1016/j.enpol.2013.05.091
[164] Lam, P.-L., & Shiu, A. (2001). A data envelopment analysis of the efficiency of China’s thermal power generation. Utilities Policy, 10, 75–83. · doi:10.1016/S0957-1787(02)00036-X
[165] Lampe, H. W., & Hilgers, D. (2015). Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA. European Journal of Operational Research, 240, 1–21. · Zbl 1339.90009 · doi:10.1016/j.ejor.2014.04.041
[166] Lee, Y.-C., Hu, J.-L., & Kao, C.-H. (2011a). Efficient saving targets of electricity and energy for regions in China. International Journal of Electrical Power & Energy Systems, 33, 1211–1219. · doi:10.1016/j.ijepes.2011.01.015
[167] Lee, W.-S., & Kung, C.-K. (2011b). Using climate classification to evaluate building energy performance. Energy, 36, 1797–1801. · doi:10.1016/j.energy.2010.12.034
[168] Lee, S. K., Mogi, G., & Hui, K. S. (2013). A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices. Renewable and Sustainable Energy Reviews, 21, 347–355. · doi:10.1016/j.rser.2012.12.067
[169] Lee, S. K., Mogi, G., Lee, S. K., Hui, K. S., & Kim, J. W. (2010). Econometric analysis of the R&D performance in the national hydrogen energy technology development for measuring relative efficiency: The fuzzy AHP/DEA integrated model approach. International Journal of Hydrogen Energy, 35, 2236–2246. · doi:10.1016/j.ijhydene.2010.01.009
[170] Lee, S. K., Mogi, G., Li, Z., Hui, K. S., Lee, S. K., Hui, K. N., et al. (2011b). Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: An integrated fuzzy AHP/DEA approach. International Journal of Hydrogen Energy, 36, 12655–12663. · doi:10.1016/j.ijhydene.2011.06.135
[171] Lee, M., & Zhang, N. (2012). Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries. Energy Economics, 34, 1492–1497. · doi:10.1016/j.eneco.2012.06.023
[172] Lei, M., Zhao, X., Deng, H., & Tan, K.-C. (2013). DEA analysis of FDI attractiveness for sustainable development: Evidence from Chinese provinces. Decision Support Systems, 56, 406–418. · doi:10.1016/j.dss.2012.10.053
[173] Leme, R. C., Paiva, A. P., Steele Santos, P. E., Balestrassi, P. P., & de Lima Galvão, L. (2014). Design of experiments applied to environmental variables analysis in electricity utilities efficiency: The Brazilian case. Energy Economics, 45, 111–119. · doi:10.1016/j.eneco.2014.06.017
[174] Li, L.-B., & Hu, J.-L. (2012). Ecological total-factor energy efficiency of regions in China. Energy Policy, 46, 216–224. · doi:10.1016/j.enpol.2012.03.053
[175] Li, L., Li, M., & Wu, C. (2013a). Production efficiency evaluation of energy companies based on the improved super-efficiency data envelopment analysis considering undesirable outputs. Mathematical and Computer Modelling, 58, 1057–1066. · doi:10.1016/j.mcm.2012.07.001
[176] Li, K., & Lin, B. (2015a). Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China. Energy Economics, 48, 230–241. · doi:10.1016/j.eneco.2015.01.006
[177] Li, K., & Lin, B. (2015b). The efficiency improvement potential for coal, oil and electricity in China’s manufacturing sectors. Energy, 86, 403–413. · doi:10.1016/j.energy.2015.04.013
[178] Li, Y., Sun, L., Feng, T., & Zhu, C. (2013b). How to reduce energy intensity in China: A regional comparison perspective. Energy Policy, 61, 513–522. · doi:10.1016/j.enpol.2013.06.007
[179] Li, H., Yang, W., Zhou, Z., & Huang, C. (2013c). Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Mathematical and Computer Modelling, 58, 913–926. · doi:10.1016/j.mcm.2012.10.026
[180] Li, X.-G., Yang, J., & Liu, X.-J. (2013d). Analysis of Beijing’s environmental efficiency and related factors using a DEA model that considers undesirable outputs. Mathematical and Computer Modelling, 58, 956–960. · doi:10.1016/j.mcm.2012.10.016
[181] Liang, L., Wu, D., & Hua, Z. (2004). MES-DEA modelling for analyzing anti-industrial pollution efficiency and its application in Anhui province of China. International Journal of Global Energy Issues, 22, 88–98. · doi:10.1504/IJGEI.2004.005888
[182] Lin, B., & Du, K. (2015a). Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy, 78, 113–124. · doi:10.1016/j.enpol.2014.12.025
[183] Lin, B., & Du, K. (2015b). Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach. Energy Economics, 49, 550–557. · doi:10.1016/j.eneco.2015.03.028
[184] Lin, B., & Liu, X. (2012). Dilemma between economic development and energy conservation: Energy rebound effect in China. Energy, 45, 867–873. · doi:10.1016/j.energy.2012.06.077
[185] Lins, M. E., Oliveira, L. B., da Silva, A. C. M., Rosa, L. P., & Pereira, A. O., Jr. (2012). Performance assessment of alternative energy resources in Brazilian power sector using data envelopment analysis. Renewable and Sustainable Energy Reviews, 16, 898–903. · doi:10.1016/j.rser.2011.09.010
[186] Liu, W. (2015). Measuring efficiency and scope economies of cogeneration enterprises in Northeast China under the background of energy saving and emission reduction. Ecological Indicators, 51, 173–179. · doi:10.1016/j.ecolind.2014.08.031
[187] Liu, C. H., Lin, S. J., & Lewis, C. (2010). Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis. Energy Policy, 38, 1049–1058. · doi:10.1016/j.enpol.2009.10.057
[188] Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41, 893–902. · doi:10.1016/j.omega.2012.11.004
[189] Liu, Y., Ren, L., Li, Y., & Zhao, X.-g. (2015). The industrial performance of wind power industry in China. Renewable and Sustainable Energy Reviews, 43, 644–655. · doi:10.1016/j.rser.2014.11.003
[190] Lo, F.-Y., Chien, C.-F., & Lin, J. T. (2001). A DEA study to evaluate the relative efficiency and investigate the district reorganization of the Taiwan power company. IEEE Transactions on Power Systems, 16, 170–178. · doi:10.1109/59.910794
[191] Løken, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11, 1584–1595. · doi:10.1016/j.rser.2005.11.005
[192] Long, X., Zhao, X., & Cheng, F. (2015). The comparison analysis of total factor productivity and eco-efficiency in China’s cement manufactures. Energy Policy, 81, 61–66. · doi:10.1016/j.enpol.2015.02.012
[193] Lozano, S., & Gutiérrez, E. (2008). Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions. Ecological Economics, 66, 687–699. · doi:10.1016/j.ecolecon.2007.11.003
[194] Lozano, S., Villa, G., & Brännlund, R. (2009). Centralised reallocation of emission permits using DEA. European Journal of Operational Research, 193, 752–760. · Zbl 1179.90190 · doi:10.1016/j.ejor.2007.07.029
[195] Lv, W., Zhou, Z., & Huang, H. (2013). The measurement of undesirable output based-on DEA in E&E: Models development and empirical analysis. Mathematical and Computer Modelling, 58, 907–912. · doi:10.1016/j.mcm.2013.06.007
[196] Ma, C., & Zhao, X. (2015). China’s electricity market restructuring and technology mandates: Plant-level evidence for changing operational efficiency. Energy Economics, 47, 227–237. · doi:10.1016/j.eneco.2014.11.012
[197] Madlener, R., Antunes, C. H., & Dias, L. C. (2009). Assessing the performance of biogas plants with multi-criteria and data envelopment analysis. European Journal of Operational Research, 197, 1084–1094. · doi:10.1016/j.ejor.2007.12.051
[198] Mallikarjun, S., & Lewis, H. F. (2014). Energy technology allocation for distributed energy resources: A strategic technology-policy framework. Energy, 72, 783–799. · doi:10.1016/j.energy.2014.05.113
[199] Mandal, S. K. (2010). Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry. Energy Policy, 38, 6076–6083. · doi:10.1016/j.enpol.2010.05.063
[200] Menegaki, A. N. (2013). Growth and renewable energy in Europe: Benchmarking with data envelopment analysis. Renewable Energy, 60, 363–369. · doi:10.1016/j.renene.2013.05.042
[201] Meng, F. Y., Fan, L. W., Zhou, P., & Zhou, D. Q. (2013). Measuring environmental performance in China’s industrial sectors with non-radial DEA. Mathematical and Computer Modelling, 58, 1047–1056. · doi:10.1016/j.mcm.2012.08.009
[202] Miliotis, P. A. (1992). Data envelopment analysis applied to electricity distribution districts. Journal of the Operational Research Society, 43, 549–555. · Zbl 0825.90657 · doi:10.1057/jors.1992.80
[203] Mobtaker, H. G., Akram, A., Keyhani, A., & Mohammadi, A. (2012). Optimization of energy required for alfalfa production using data envelopment analysis approach. Energy for Sustainable Development, 16, 242–248. · doi:10.1016/j.esd.2012.02.001
[204] Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M. T., Keyhani, A., et al. (2013). Potential greenhouse gas emission reductions in soybean farming: A combined use of life cycle assessment and data envelopment analysis. Journal of Cleaner Production, 54, 89–100. · doi:10.1016/j.jclepro.2013.05.019
[205] Mohan, S. V., Raghavulu, S. V., Mohanakrishna, G., Srikanth, S., & Sarma, P. N. (2009). Optimization and evaluation of fermentative hydrogen production and wastewater treatment processes using data enveloping analysis (DEA) and Taguchi design of experimental (DOE) methodology. International Journal of Hydrogen Energy, 34, 216–226. · doi:10.1016/j.ijhydene.2008.09.044
[206] Molinos-Senante, M., Hernández-Sancho, F., Mocholí-Arce, M., & Sala-Garrido, R. (2014). Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resource and Energy Economics, 38, 125–140. · doi:10.1016/j.reseneeco.2014.07.001
[207] Mou, D. (2014). Understanding China’s electricity market reform from the perspective of the coal-fired power disparity. Energy Policy, 74, 224–234. · doi:10.1016/j.enpol.2014.09.002
[208] Mousavi-Avval, S. H., Mohammadi, A., Rafiee, S., & Tabatabaeefar, A. (2012). Assessing the technical efficiency of energy use in different barberry production systems. Journal of Cleaner Production, 27, 126–132. · doi:10.1016/j.jclepro.2012.01.014
[209] Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011a). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36, 2765–2772. · doi:10.1016/j.energy.2011.02.016
[210] Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using data envelopment analysis (DEA) approach. Applied Energy, 88, 3765–3772. · doi:10.1016/j.apenergy.2011.04.021
[211] Mukherjee, K. (2008). Energy use efficiency in the Indian manufacturing sector: An interstate analysis. Energy Policy, 36, 662–672. · doi:10.1016/j.enpol.2007.10.015
[212] Munksgaard, J., Pade, L.-L., & Fristrup, P. (2005). Efficiency gains in Danish district heating. Is there anything to learn from benchmarking? Energy Policy, 33, 1986–1997. · doi:10.1016/j.enpol.2004.03.019
[213] Murillo-Zamorano, L. R. (2005). The role of energy in productivity growth: A controversial issue? The Energy Journal, 26, 69–88. · doi:10.5547/ISSN0195-6574-EJ-Vol26-No2-4
[214] Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Mobtaker, H. G. (2014). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311–317. · doi:10.1016/j.jclepro.2013.08.019
[215] Nag, B. (2006). Estimation of carbon baselines for power generation in India: The supply side approach. Energy Policy, 34, 1399–1410. · doi:10.1016/j.enpol.2004.09.011
[216] Nassiri, S., & Singh, S. (2007). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Applied Energy, 86, 1320–1325. · doi:10.1016/j.apenergy.2008.10.007
[217] Nouri, J., Hosseinzadeh Lotfi, F., Borgheipour, H., Atabi, F., Sadeghzadeh, S. M., & Moghaddas, Z. (2013). An analysis of the implementation of energy efficiency measures in the vegetable oil industry of Iran: A data envelopment analysis approach. Journal of Cleaner Production, 52, 84–93. · doi:10.1016/j.jclepro.2013.02.021
[218] Odeck, J. (2009). Statistical precision of DEA and Malmquist indices: A bootstrap application to Norwegian grain producers. Omega, 37, 1007–1017. · doi:10.1016/j.omega.2008.11.003
[219] Oggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cements industry: A data envelopment analysis. Energy Policy, 39, 2842–2854. · doi:10.1016/j.enpol.2011.02.057
[220] Oh, S.-C., & Shin, J. (2015). The impact of mismeasurement in performance benchmarking: A Monte Carlo comparison of SFA and DEA with different multi-period budgeting strategies. European Journal of Operational Research, 240, 518–227. · doi:10.1016/j.ejor.2014.07.026
[221] Olanrewaju, O. A., Jimoh, A. A., & Kholopane, P. A. (2012). Integrated IDA-ANN-DEA for assessment and optimization of energy consumption in industrial sectors. Energy, 46, 629–635. · doi:10.1016/j.energy.2012.07.037
[222] Olanrewaju, O. A., Jimoh, A. A., & Kholopane, P. A. (2013). Assessing the energy potential in the South African industry: A combined IDA-ANN-DEA (Index Decomposition Analysis-Artificial Neural Network-Data Envelopment Analysis) model. Energy, 63, 225–232. · doi:10.1016/j.energy.2013.10.038
[223] Olatubi, W. O., & Dismukes, D. E. (2000). A data envelopment analysis of the levels and determinants of coal-fired electric power generation performance. Utilities Policy, 9, 47–59. · doi:10.1016/S0957-1787(01)00004-2
[224] Omid, M., Ghojabeige, F., Delshad, M., & Ahmadi, H. (2011). Energy use pattern and benchmarking of selected greenhouses in Iran using. Energy Conversion and Management, 52, 153–162. · doi:10.1016/j.enconman.2010.06.054
[225] Omrani, H., Gharizadeh Beiragh, R., & Shafiei Kaleibari, S. (2015). Performance assessment of Iranian electricity distribution companies by an integrated cooperative game data envelopment analysis principal component analysis approach. International Journal of Electrical Power & Energy Systems, 64, 617–625. · doi:10.1016/j.ijepes.2014.07.045
[226] Önüt, S., & Soner, S. (2006). Energy efficiency assessment for the Antalya region hotels in Turkey. Energy and Buildings, 38, 964–971. · doi:10.1016/j.enbuild.2005.11.006
[227] Oude Lansink, A., & Bezlepkin, I. (2003). The effect of heating technologies on CO2 and energy efficiency of Dutch greenhouse firms. Journal of Environmental Management, 68, 73–82. · doi:10.1016/S0301-4797(02)00233-5
[228] Oude Lansink, A., & Silva, E. (2003). CO2 and energy efficiency of different heating technologies in the Dutch glasshouse industry. Environmental and Resource Economics, 24, 395–407. · doi:10.1023/A:1023684316366
[229] Pacudan, R., & de Guzman, E. (2002). Impact of energy efficiency policy to productive efficiency of electricity distribution industry in the Philippines. Energy Economics, 24, 41–54. · doi:10.1016/S0140-9883(01)00085-8
[230] Pahlavan, R., Omid, M., & Akram, A. (2011). Energy use efficiency in greenhouse tomato production in Iran. Energy, 36, 6714–6719. · doi:10.1016/j.energy.2011.10.038
[231] Pahwa, A., Xiaoming, F., & Lubkeman, D. (2003). Performance evaluation of electric distribution utilities based on data envelopment analysis. IEEE Transactions on Power Systems, 18, 400–405. · doi:10.1109/TPWRS.2002.800986
[232] Pan, H., Haiyun, Z., & Xulu, Z. (2013). China’s provincial industrial energy efficiency and its determinants. Mathematical and Computer Modelling, 58, 1032–1039. · doi:10.1016/j.mcm.2012.09.006
[233] Pan, X., Liu, Q., & Peng, X. (2015). Spatial club convergence of regional energy efficiency in China. Ecological Indicators, 51, 25–30. · doi:10.1016/j.ecolind.2014.10.026
[234] Park, S.-U., & Lesourd, J.-B. (2000). The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches. International Journal of Production Economics, 63, 59–67. · doi:10.1016/S0925-5273(98)00252-7
[235] Pasurka, C. A. (2006). Decomposing electric power plant emissions within a joint production framework. Energy Economics, 28, 26–43. · doi:10.1016/j.eneco.2005.08.002
[236] Picazo-Tadeo, A. J., Reig-Martínez, E., & Hernández-Sancho, F. (2005). Directional distance functions and environmental regulation. Resource and Energy Economics, 27, 131–142. · doi:10.1016/j.reseneeco.2004.07.001
[237] Pollitt, M. G. (1996). Ownership and efficiency in nuclear power production. Oxford Economic Papers, 48, 342–360. · doi:10.1093/oxfordjournals.oep.a028572
[238] Pombo, C., & Taborda, R. (2006). Performance and efficiency in Colombia’s power distribution system: Effects of the 1994 reform. Energy Economics, 28, 339–369. · doi:10.1016/j.eneco.2005.08.001
[239] Price, C. W., & Weyman-Jones, T. (1996). Malmquist indices of productivity change in the UK gas industry before and after privatization. Applied Economics, 28, 29–39. · doi:10.1080/00036849600000004
[240] Raczka, J. (2001). Explaining the performance of heat plants in Poland. Energy Economics, 23, 355–370. · doi:10.1016/S0140-9883(00)00076-1
[241] Ramanathan, R. (2000). A holistic approach to compare energy efficiencies of different transport modes. Energy Policy, 28, 743–747. · doi:10.1016/S0301-4215(00)00072-0
[242] Ramanathan, R. (2001). Comparative risk assessment of energy supply technologies: A data envelopment analysis approach. Energy, 26, 197–203. · doi:10.1016/S0360-5442(00)00058-X
[243] Ramanathan, R. (2005a). An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy, 30, 2831–2842.
[244] Ramanathan, R. (2005b). Estimating energy consumption of transport modes in India using DEA and application to energy and environmental policy. Journal of the Operational Research Society, 56, 732–737. · Zbl 1095.90572 · doi:10.1057/palgrave.jors.2601866
[245] Ramli, N. A., & Munisamy, S. (2015). Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure. Economic Modelling, 47, 219–227. · doi:10.1016/j.econmod.2015.02.034
[246] Rao, X., Wu, J., Zhang, Z., & Liu, B. (2012). Energy efficiency and energy saving potential in China: An analysis based on slacks-based measure model. Computers & Industrial Engineering, 63, 578–584. · doi:10.1016/j.cie.2011.08.023
[247] Rashidi, K., & Farzipoor Saen, R. (2015). Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement. Energy Economics, 50, 18–26. · doi:10.1016/j.eneco.2015.04.018
[248] Reinhard, S., Knox Lovell, C. A., & Thijssen, G. J. (2000). Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. European Journal of Operational Research, 121, 287–303. · Zbl 0951.91507 · doi:10.1016/S0377-2217(99)00218-0
[249] Ren, J., Tan, S., Dong, L., Mazzi, A., Scipioni, A., & Sovacool, B. K. (2014). Determining the life cycle energy efficiency of six biofuel systems in China: A data envelopment analysis. Bioresource Technology, 162, 1–7. · doi:10.1016/j.biortech.2014.03.105
[250] Resende, M. (2002). Relative efficiency measurement and prospects for yardstick competition in Brazilian electricity distribution. Energy Policy, 30, 637–647. · doi:10.1016/S0301-4215(01)00132-X
[251] Riccardi, R., Oggioni, G., & Toninelli, R. (2012). Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function. Energy Policy, 44, 140–152. · doi:10.1016/j.enpol.2012.01.030
[252] Rogge, N., & De Jaeger, S. (2012). Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model. Waste Management, 32, 1968–1978. · doi:10.1016/j.wasman.2012.05.021
[253] Sadjadi, S. J., & Omrani, H. (2008). Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies. Energy Policy, 36, 4247–4254. · doi:10.1016/j.enpol.2008.08.004
[254] Sala-Garrido, R., Hernández-Sancho, F., & Molinos-Senante, M. (2012). Assessing the efficiency of wastewater treatment plants in an uncertain context: A DEA with tolerances approach. Environmental Science & Policy, 18, 34–44. · doi:10.1016/j.envsci.2011.12.012
[255] Sanhueza, R., Rudnick, H., & Lagunas, H. (2004). DEA efficiency for the determination of the electric power distribution added value. IEEE Transactions on Power Systems, 19, 919–925. · doi:10.1109/TPWRS.2004.826723
[256] Sarica, K., & Or, I. (2007). Efficiency assessment of Turkish power plants using DEA. Energy, 32, 1484–1499. · doi:10.1016/j.energy.2006.10.016
[257] Sarkis, J., & Cordeiro, J. J. (2012). Ecological modernization in the electrical utility industry: An application of a bads-goods DEA model of ecological and technical efficiency. European Journal of Operational Research, 219, 386–395. · Zbl 1244.90148 · doi:10.1016/j.ejor.2011.09.033
[258] Sarkis, J., & Weinrach, J. (2001). Using data envelopment analysis to evaluate environmentally conscious waste treatment technology. Journal of Cleaner Production, 9, 417–427. · doi:10.1016/S0959-6526(00)00084-6
[259] Scheel, H. (2001). Undesirable outputs in efficiency valuations. European Journal of Operational Research, 132, 400–410. · Zbl 0985.90053 · doi:10.1016/S0377-2217(00)00160-0
[260] Serra, T., Chambers, R. G., & Oude Lansink, A. (2014). Measuring technical and environmental efficiency in a state-contingent technology. European Journal of Operational Research, 236, 706–717. · doi:10.1016/j.ejor.2013.12.037
[261] Serra, T., & Poli, E. (2015). Shadow prices of social capital in rural India, a nonparametric approach. European Journal of Operational Research, 240, 892–903. · doi:10.1016/j.ejor.2014.08.019
[262] Shakouri, G. H., Nabaee, M., & Aliakbarisani, S. (2014). A quantitative discussion on the assessment of power supply technologies: DEA (data envelopment analysis) and SAW (simple additive weighting) as complementary methods for the ”Grammar”. Energy, 64, 640–647. · doi:10.1016/j.energy.2013.10.022
[263] Sheng, Y., Wu, Y., Shi, X., & Zhang, D. (2015). Energy trade efficiency and its determinants: A Malmquist index approach. Energy Economics, 50, 306–314. · doi:10.1016/j.eneco.2015.05.019
[264] Shi, G.-M., Bi, J., & Wang, J.-N. (2010). Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy, 38, 6172–6179. · doi:10.1016/j.enpol.2010.06.003
[265] Skevas, T., Stefanou, S. E., & Oude Lansink, A. (2014). Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming. European Journal of Operational Research, 237, 658–664. · doi:10.1016/j.ejor.2014.01.046
[266] Song, C., Li, M., Zhang, F., He, Y.-L., & Tao, W.-Q. (2015a). A data envelopment analysis for energy efficiency of coal-fired power units in China. Energy Conversion and Management, 102, 121–130. · doi:10.1016/j.enconman.2014.12.062
[267] Song, M. L., & Wang, S. H. (2014). DEA decomposition of China’s environmental efficiency based on search algorithm. Applied Mathematics and Computation, 247, 562–572. · Zbl 1338.90239 · doi:10.1016/j.amc.2014.09.050
[268] Song, M., Yang, L., Wu, J., & Lv, W. (2013a). Energy saving in China: Analysis on the energy efficiency via bootstrap-DEA approach. Energy Policy, 57, 1–6. · doi:10.1016/j.enpol.2012.11.001
[269] Song, M.-L., Zhang, L.-L., Liu, W., & Fisher, R. (2013b). Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Applied Energy, 112, 1049–1055. · doi:10.1016/j.apenergy.2013.02.064
[270] Song, M., Zhang, J., & Wang, S. (2015b). Review of the network environmental efficiencies of listed petroleum enterprises in China. Renewable and Sustainable Energy Reviews, 43, 65–71. · doi:10.1016/j.rser.2014.11.050
[271] Sözen, A., & Alp, I. (2009). Comparison of Turkey’s performance of greenhouse gas emissions and local/regional pollutants with EU countries. Energy Policy, 37, 5007–5018. · doi:10.1016/j.enpol.2009.06.069
[272] Sözen, A., Alp, I., & Kilinc, C. (2012). Efficiency assessment of the hydro-power plants in Turkey by using data envelopment analysis. Renewable Energy, 46, 192–202. · doi:10.1016/j.renene.2012.03.021
[273] Sözen, A., Alp, I., & Özdemir, A. (2010). Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis. Energy Policy, 38, 6194–6203. · doi:10.1016/j.enpol.2010.06.005
[274] Stallard, T., Rothschild, R., & Aggidis, G. A. (2008). A comparative approach to the economic modelling of a large-scale wave power scheme. European Journal of Operational Research, 185, 884–898. · Zbl 1137.90563 · doi:10.1016/j.ejor.2007.01.021
[275] Sueyoshi, T. (1999). Tariff structure of Japanese electric power companies: An empirical analysis using DEA. European Journal of Operational Research, 118, 350–374. · Zbl 0939.91046 · doi:10.1016/S0377-2217(98)00313-0
[276] Sueyoshi, T. (2000). Stochastic DEA for restructure strategy: An application to a Japanese petroleum company. Omega, 28, 385–398. · doi:10.1016/S0305-0483(99)00069-9
[277] Sueyoshi, T., & Goto, M. (2001). Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984-1993. European Journal of Operational Research, 133, 232–259. · Zbl 0992.90503 · doi:10.1016/S0377-2217(00)00295-2
[278] Sueyoshi, T., & Goto, M. (2009a). Can environmental investment and expenditure enhance financial performance of US electric utility firms under the clean air act amendment of 1990? Energy Policy, 37, 4819–4826. · doi:10.1016/j.enpol.2009.06.038
[279] Sueyoshi, T., & Goto, M. (2009b). Can R&D expenditure avoid corporate bankruptcy? Comparison between Japanese machinery and electric equipment industries using DEA-discriminant analysis. European Journal of Operational Research, 196, 289–311. · Zbl 1159.90429 · doi:10.1016/j.ejor.2008.02.021
[280] Sueyoshi, T., & Goto, M. (2010a). Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of data envelopment analysis with strong complementary slackness condition. European Journal of Operational Research, 207, 1742–1753. · doi:10.1016/j.ejor.2010.07.024
[281] Sueyoshi, T., & Goto, M. (2010b). Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis. Energy Policy, 38, 5902–5911. · doi:10.1016/j.enpol.2010.05.044
[282] Sueyoshi, T., & Goto, M. (2011a). DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation. Energy Economics, 33, 292–303. · doi:10.1016/j.eneco.2010.07.008
[283] Sueyoshi, T., & Goto, M. (2011b). Measurement of returns to scale and damages to scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs? European Journal of Operational Research, 211, 76–89. · Zbl 1218.90094 · doi:10.1016/j.ejor.2010.11.013
[284] Sueyoshi, T., & Goto, M. (2011c). Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment. European Journal of Operational Research, 210, 684–693. · Zbl 1213.90143 · doi:10.1016/j.ejor.2010.10.030
[285] Sueyoshi, T., & Goto, M. (2012a). Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry. European Journal of Operational Research, 216, 668–678. · Zbl 1237.90151 · doi:10.1016/j.ejor.2011.07.046
[286] Sueyoshi, T., & Goto, M. (2012b). DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models. Energy Economics, 34, 1854–1863. · doi:10.1016/j.eneco.2012.07.008
[287] Sueyoshi, T., & Goto, M. (2012c). DEA radial and non-radial models for unified efficiency under natural and managerial disposability: Theoretical extension by strong complementary slackness conditions. Energy Economics, 34, 700–713. · doi:10.1016/j.eneco.2011.12.013
[288] Sueyoshi, T., & Goto, M. (2012d). DEA radial measurement for environmental assessment and planning: Desirable procedures to evaluate fossil fuel power plants. Energy Policy, 41, 422–432. · doi:10.1016/j.enpol.2011.11.003
[289] Sueyoshi, T., & Goto, M. (2012e). Efficiency-based rank assessment for electric power industry: A combined use of data envelopment analysis (DEA) and DEA-discriminant analysis (DA). Energy Economics, 34, 634–644. · doi:10.1016/j.eneco.2011.04.001
[290] Sueyoshi, T., & Goto, M. (2012f). Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (independent system operator) and RTO (regional transmission organization). Energy Economics, 34, 663–676. · doi:10.1016/j.eneco.2011.08.016
[291] Sueyoshi, T., & Goto, M. (2012g). Returns to scale and damages to scale on U.S. fossil fuel power plants: Radial and non-radial approaches for DEA environmental assessment. Energy Economics, 34, 2240–2259. · doi:10.1016/j.eneco.2012.07.024
[292] Sueyoshi, T., & Goto, M. (2012h). Returns to scale and damages to scale under natural and managerial disposability: Strategy, efficiency and competitiveness of petroleum firms. Energy Economics, 34, 645–662. · doi:10.1016/j.eneco.2011.07.003
[293] Sueyoshi, T., & Goto, M. (2012i). Returns to scale and damages to scale with strong complementary slackness conditions in DEA assessment: Japanese corporate effort on environment protection. Energy Economics, 34, 1422–1434. · doi:10.1016/j.eneco.2012.06.014
[294] Sueyoshi, T., & Goto, M. (2012j). Returns to scale, damages to scale, marginal rate of transformation and rate of substitution in DEA environmental assessment. Energy Economics, 34, 905–917. · doi:10.1016/j.eneco.2012.04.003
[295] Sueyoshi, T., & Goto, M. (2012k). Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries. Energy Economics, 34, 686–699. · doi:10.1016/j.eneco.2011.10.018
[296] Sueyoshi, T., & Goto, M. (2013a). A comparative study among fossil fuel power plants in PJM and California ISO by DEA environmental assessment. Energy Economics, 40, 130–145. · doi:10.1016/j.eneco.2013.06.004
[297] Sueyoshi, T., & Goto, M. (2013b). Data envelopment analysis as a data mining methodology for environmental assessment. Journal of Data and Information Processing, 1, 19–27. · doi:10.4236/jdaip.2013.13004
[298] Sueyoshi, T., & Goto, M. (2013c). DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO2 of industrial nations. Energy Economics, 40, 370–382. · doi:10.1016/j.eneco.2013.07.013
[299] Sueyoshi, T., & Goto, M. (2013d). Returns to scale vs. damages to scale in data envelopment analysis: An impact of U.S. clean air act on coal-fired power plants. Omega, 41, 164–175. · doi:10.1016/j.omega.2010.04.005
[300] Sueyoshi, T., & Goto, M. (2014a). DEA radial measurement for environmental assessment: A comparative study between Japanese chemical and pharmaceutical firms. Applied Energy, 115, 502–513. · doi:10.1016/j.apenergy.2013.10.014
[301] Sueyoshi, T., & Goto, M. (2014b). Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors. Energy Economics, 46, 295–307. · doi:10.1016/j.eneco.2014.09.021
[302] Sueyoshi, T., & Goto, M. (2014c). Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors. Energy Economics, 42, 299–312. · doi:10.1016/j.eneco.2014.01.001
[303] Sueyoshi, T., & Goto, M. (2014d). Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis. Energy Economics, 42, 271–288. · doi:10.1016/j.eneco.2014.01.004
[304] Sueyoshi, T., & Goto, M. (2015a). DEA environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement. Energy Economics, 50, 125–139. · doi:10.1016/j.eneco.2015.04.016
[305] Sueyoshi, T., & Goto, M. (2015b). DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies. Energy Economics, 51, 329–345. · doi:10.1016/j.eneco.2015.07.010
[306] Sueyoshi, T., & Goto, M. (2015c). Japanese fuel mix strategy after disaster of Fukushima Daiichi’s nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time horizon. Energy Economics, 52, 87–103. · doi:10.1016/j.eneco.2015.09.001
[307] Sueyoshi, T., Goto, M., & Shang, J. (2009). Core business concentration vs. corporate diversification in the US electric utility industry: Synergy and deregulation effects. Energy Policy, 37, 4583–4594. · doi:10.1016/j.enpol.2009.06.013
[308] Sueyoshi, T., Goto, M., & Snell, M. A. (2013a). DEA environmental assessment: Measurement of damages to scale with unified efficiency under managerial disposability or environmental efficiency. Applied Mathematical Modelling, 37, 7300–7314. · Zbl 1426.90161 · doi:10.1016/j.apm.2013.02.027
[309] Sueyoshi, T., Goto, M., & Sugiyama, M. (2013b). DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of U.S. coal-fired power plants. Energy Economics, 40, 845–857. · doi:10.1016/j.eneco.2013.09.020
[310] Sueyoshi, T., Goto, M., & Ueno, T. (2010). Performance analysis of US coal-fired power plants by measuring three DEA efficiencies. Energy Policy, 38, 1675–1688. · doi:10.1016/j.enpol.2009.11.017
[311] Sueyoshi, T., & Wang, D. (2014a). Radial and non-radial approaches for environmental assessment by data envelopment analysis: Corporate sustainability and effective investment for technology innovation. Energy Economics, 45, 537–551. · doi:10.1016/j.eneco.2014.07.024
[312] Sueyoshi, T., & Wang, D. (2014b). Sustainability development for supply chain management in U.S. petroleum industry by DEA environmental assessment. Energy Economics, 46, 360–374. · doi:10.1016/j.eneco.2014.09.022
[313] Sueyoshi, T., & Yuan, Y. (2015a). China’s regional sustainability and diversity: DEA environmental assessment on economic development and air pollution. Energy Economics, 49, 239–256. · doi:10.1016/j.eneco.2015.01.024
[314] Sueyoshi, T., & Yuan, Y. (2015b). Comparison among U.S. industrial sectors by DEA environmental assessment: Equipped with analytical capability to handle zero and negative values in Production factors. Energy Economics, 52(Part A), 69–86.
[315] Taghavifar, H., Mardani, A., & Karim-Maslak, H. (2014). Multi-criteria optimization model to investigate the energy waste of off-road vehicles utilizing soil bin facility. Energy, 73, 762–770. · doi:10.1016/j.energy.2014.06.081
[316] Tao, Y., & Zhang, S. (2013). Environmental efficiency of electric power industry in the Yangtze river delta. Mathematical and Computer Modelling, 58, 927–935. · doi:10.1016/j.mcm.2012.10.025
[317] Taskin, F., & Zaim, O. (2001). The role of international trade on environmental efficiency: A DEA approach. Economic Modelling, 18, 1–17. · doi:10.1016/S0264-9993(00)00025-0
[318] Thakur, T., Deshmukh, S. G., & Kaushik, S. C. (2006). Efficiency evaluation of the state owned electric utilities in India. Energy Policy, 34, 2788–2804. · doi:10.1016/j.enpol.2005.03.022
[319] Thompson, R. G., Dharmapala, P. S., Rothenberg, L. J., & Thrall, R. M. (1996). DEA/AR efficiency and profitability of 14 major oil companies in U.S. exploration and production. Computers & Operations Research, 23, 357–373. · Zbl 0857.90076 · doi:10.1016/0305-0548(95)00044-5
[320] Thompson, R. G., Dharmapala, P. S., & Thrall, R. M. (1995). Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines. International Journal of Production Economics, 39, 99–115. · doi:10.1016/0925-5273(94)00064-H
[321] Thompson, R. G., Lee, E., & Thrall, R. M. (1992). DEA/AR-efficiency of U.S. independent oil/gas producers over time. Computers & Operations Research, 19, 377–391. · doi:10.1016/0305-0548(92)90068-G
[322] Tone, K., & Tsutsui, M. (2007). Decomposition of cost efficiency and its application to Japanese-US electric utility comparisons. Socio-Economic Planning Sciences, 41, 91–106. · doi:10.1016/j.seps.2005.10.007
[323] Triantis, K., & Otis, P. (2004). Dominance-based measurement of productive and environmental performance for manufacturing. European Journal of Operational Research, 154, 447–464. · Zbl 1146.90453 · doi:10.1016/S0377-2217(03)00181-4
[324] Tsolas, I. E. (2011). Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA. Resources Policy, 36, 159–167. · doi:10.1016/j.resourpol.2010.10.003
[325] Tyteca, D. (1996). On the measurement of the environmental performance of firms: A literature review and a productive efficiency perspective. Journal of Environmental Management, 46, 281–308. · doi:10.1006/jema.1996.0022
[326] Tyteca, D. (1997). Linear programming models for the measurement of environmental performance of firms: Concepts and empirical results. Journal of Productivity Analysis, 8, 183–197. · doi:10.1023/A:1013296909029
[327] Tyteca, D. (1998). Sustainability indicators at the firm level. Journal of Industrial Ecology, 2, 61–77. · doi:10.1162/jiec.1998.2.4.61
[328] Vaninsky, A. (2006). Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis. Energy Economics, 28, 326–338. · doi:10.1016/j.eneco.2006.02.007
[329] Vasco Correa, C. A. (2012). Economic evaluation of current conditions of competition and efficiency of automotive and rail systems in Colombia. Energy Policy, 46, 78–87. · doi:10.1016/j.enpol.2012.03.029
[330] Vazhayil, J. P., & Balasubramanian, R. (2013). Optimization of India’s power sector strategies using weight-restricted stochastic data envelopment analysis. Energy Policy, 56, 456–465. · doi:10.1016/j.enpol.2013.01.003
[331] Vlontzos, G., Niavis, S., & Manos, B. (2014). A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries. Renewable and Sustainable Energy Reviews, 40, 91–96. · doi:10.1016/j.rser.2014.07.153
[332] Voltes-Dorta, A., Perdiguero, J., & Jiménez, J. L. (2013). Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach. Energy Economics, 38, 77–86. · doi:10.1016/j.eneco.2013.03.005
[333] Wang, C. (2013). Changing energy intensity of economies in the world and its decomposition. Energy Economics, 40, 637–644. · doi:10.1016/j.eneco.2013.08.014
[334] Wang, H. (2015). A generalized MCDA-DEA (multi-criterion decision analysis-data envelopment analysis) approach to construct slacks-based composite indicator. Energy, 80, 114–122. · doi:10.1016/j.energy.2014.11.051
[335] Wang, Z., & Feng, C. (2015). Sources of production inefficiency and productivity growth in China: A global data envelopment analysis. Energy Economics, 49, 380–389. · doi:10.1016/j.eneco.2015.03.009
[336] Wang, Z., Feng, C., & Zhang, B. (2014a). An empirical analysis of China’s energy efficiency from both static and dynamic perspectives. Energy, 74, 322–330. · doi:10.1016/j.energy.2014.06.082
[337] Wang, D., Li, S., & Sueyoshi, T. (2014b). DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability. Energy Economics, 45, 254–267. · doi:10.1016/j.eneco.2014.07.009
[338] Wang, K., Lu, B., & Wei, Y.-M. (2013a). China’s regional energy and environmental efficiency: A range-adjusted measure based analysis. Applied Energy, 112, 1403–1415. · doi:10.1016/j.apenergy.2013.04.021
[339] Wang, J. H., Ngan, H. W., Engriwan, W., & Lo, K. L. (2007). Performance based regulation of the electricity supply industry in Hong Kong: An empirical efficiency analysis approach. Energy Policy, 35, 609–615. · doi:10.1016/j.enpol.2006.01.011
[340] Wang, K., & Wei, Y.-M. (2014). China’s regional industrial energy efficiency and carbon emissions abatement costs. Applied Energy, 130, 617–631. · doi:10.1016/j.apenergy.2014.03.010
[341] Wang, K., Wei, Y.-M., & Zhang, X. (2012a). A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs? Energy Policy, 46, 574–584. · doi:10.1016/j.enpol.2012.04.038
[342] Wang, K., Wei, Y.-M., & Zhang, X. (2013b). Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis. Applied Energy, 104, 105–116. · doi:10.1016/j.apenergy.2012.11.039
[343] Wang, K., Yu, S., & Zhang, W. (2013c). China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Mathematical and Computer Modelling, 58, 1117–1127. · doi:10.1016/j.mcm.2011.11.067
[344] Wang, Z., Zeng, H., Wei, Y.-M., & Zhang, Y. (2012b). Regional total factor energy efficiency: An empirical analysis of industrial sector in China. Applied Energy, 97, 115–123. · doi:10.1016/j.apenergy.2011.12.071
[345] Wang, K., Zhang, X., Wei, Y.-M., & Yu, S. (2013d). Regional allocation of CO2 emissions allowance over provinces in China by 2020. Energy Policy, 54, 214–229. · doi:10.1016/j.enpol.2012.11.030
[346] Wang, Q., Zhao, Z., Shen, N., & Liu, T. (2015). Have Chinese cities achieved the win-win between environmental protection and economic development? From the perspective of environmental efficiency. Ecological Indicators, 51, 151–158. · doi:10.1016/j.ecolind.2014.07.022
[347] Wang, Q., Zhao, Z., Zhou, P., & Zhou, D. (2013e). Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Economic Modelling, 35, 283–289. · doi:10.1016/j.econmod.2013.07.017
[348] Wang, Q., Zhou, P., & Zhou, D. (2012c). Efficiency measurement with carbon dioxide emissions: The case of China. Applied Energy, 90, 161–166. · doi:10.1016/j.apenergy.2011.02.022
[349] Wang, H., Zhou, P., & Zhou, D. Q. (2013f). Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis. Energy Economics, 40, 795–803. · doi:10.1016/j.eneco.2013.09.030
[350] Wei, Y.-M., Liao, H., & Fan, Y. (2007). An empirical analysis of energy efficiency in China’s iron and steel sector. Energy, 32, 2262–2270. · doi:10.1016/j.energy.2007.07.007
[351] Wei, C., Löschel, A., & Liu, B. (2015). Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis. Energy Economics, 49, 33–43. · doi:10.1016/j.eneco.2015.02.002
[352] Wei, C., Ni, J., & Sheng, M. (2011). China’s energy inefficiency: A cross-country comparison. The Social Science Journal, 48, 478–488. · doi:10.1016/j.soscij.2011.05.004
[353] Wei, Z., Zhao, P., & Ai, S. (2012). Efficiency evaluation of Beijing intelligent traffic management system based on super-DEA. Journal of Transportation Systems Engineering and Information Technology, 12, 19–23. · doi:10.1016/S1570-6672(11)60200-6
[354] Weyman-Jones, T. G. (1991). Productive efficiency in a regulated industry: The area electricity boards of England and Wales. Energy Economics, 13, 116–122. · doi:10.1016/0140-9883(91)90043-Y
[355] Woo, C., Chung, Y., Chun, D., Seo, H., & Hong, S. (2015). The static and dynamic environmental efficiency of renewable energy: A Malmquist analysis of OECD countries. Renewable and Sustainable Energy Reviews, 47, 367–376. · doi:10.1016/j.rser.2015.03.070
[356] Wu, J., An, Q., Ali, S., & Liang, L. (2013a). DEA based resource allocation considering environmental factors. Mathematical and Computer Modelling, 58, 1128–1137. · doi:10.1016/j.mcm.2011.11.030
[357] Wu, J., An, Q., Xiong, B., & Chen, Y. (2013b). Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs. Energy Policy, 57, 7–13. · doi:10.1016/j.enpol.2012.02.062
[358] Wu, H., Du, S., Liang, L., & Zhou, Y. (2013c). A DEA-based approach for fair reduction and reallocation of emission permits. Mathematical and Computer Modelling, 58, 1095–1101. · doi:10.1016/j.mcm.2012.03.008
[359] Wu, F., Fan, L. W., Zhou, P., & Zhou, D. Q. (2012). Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy, 49, 164–172. · doi:10.1016/j.enpol.2012.05.035
[360] Wu, C., Li, Y., Liu, Q., & Wang, K. (2013d). A stochastic DEA model considering undesirable outputs with weak disposability. Mathematical and Computer Modelling, 58, 980–989. · doi:10.1016/j.mcm.2012.09.022
[361] Wu, J., Lv, L., Sun, J., & Ji, X. (2015). A comprehensive analysis of China’s regional energy saving and emission reduction efficiency: From production and treatment perspectives. Energy Policy, 84, 166–176. · doi:10.1016/j.enpol.2015.05.005
[362] Yadav, V. K., Chauhan, Y. K., Padhy, N. P., & Gupta, H. O. (2013). A novel power sector restructuring model based on data envelopment analysis (DEA). International Journal of Electrical Power & Energy Systems, 44, 629–637. · doi:10.1016/j.ijepes.2012.08.013
[363] Yadav, V. K., Padhy, N. P., & Gupta, H. O. (2010). A micro level study of an Indian electric utility for efficiency enhancement. Energy, 35, 4053–4063. · doi:10.1016/j.energy.2010.06.011
[364] Yadav, V. K., Padhy, N. P., & Gupta, H. O. (2011). Performance evaluation and improvement directions for an Indian electric utility. Energy Policy, 39, 7112–7120. · doi:10.1016/j.enpol.2011.08.028
[365] Yaisawarng, S., & Klein, J. D. (1994). The effects of sulfur dioxide controls on productivity change in the U.S. electric power industry. The Review of Economics and Statistics, 76, 447–460. · doi:10.2307/2109970
[366] Yang, L., Ouyang, H., Fang, K., Ye, L., & Zhang, J. (2015). Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA. Ecological Indicators, 51, 13–19. · doi:10.1016/j.ecolind.2014.08.040
[367] Yang, H., & Pollitt, M. (2009). Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. European Journal of Operational Research, 197, 1095–1105. · doi:10.1016/j.ejor.2007.12.052
[368] Yang, H., & Pollitt, M. (2010). The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants. Energy Policy, 38, 4440–4444. · doi:10.1016/j.enpol.2010.03.075
[369] Yang, L., & Wang, K.-L. (2013). Regional differences of environmental efficiency of China’s energy utilization and environmental regulation cost based on provincial panel data and DEA method. Mathematical and Computer Modelling, 58, 1074–1083. · doi:10.1016/j.mcm.2012.04.004
[370] Yang, F., Yang, M., & Nie, H. (2013). Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations. Applied Energy, 110, 82–89. · doi:10.1016/j.apenergy.2013.04.022
[371] Yao, X., Zhou, H., Zhang, A., & Li, A. (2015). Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis. Energy Policy, 84, 142–154. · doi:10.1016/j.enpol.2015.05.001
[372] Yeh, T.-l., Chen, T.-y., & Lai, P.-y. (2010). A comparative study of energy utilization efficiency between Taiwan and China. Energy Policy, 38, 2386–2394. · doi:10.1016/j.enpol.2009.12.030
[373] Ylvinger, S. (2003). Light-duty vehicles and external impacts: Product- and policy-performance assessment. European Journal of Operational Research, 144, 194–208. · Zbl 1037.90508 · doi:10.1016/S0377-2217(01)00352-6
[374] Yu, F. W., & Chan, K. T. (2012). Improved energy management of chiller systems by multivariate and data envelopment analyses. Applied Energy, 92, 168–174. · doi:10.1016/j.apenergy.2011.11.016
[375] Yunos, J. M., & Hawdon, D. (1997). The efficiency of the national electricity board in Malaysia: An intercountry comparison using DEA. Energy Economics, 19, 255–269. · doi:10.1016/S0140-9883(96)01018-3
[376] Zaim, O. (2004). Measuring environmental performance of state manufacturing through changes in pollution intensities: A DEA framework. Ecological Economics, 48, 37–47. · doi:10.1016/j.ecolecon.2003.08.003
[377] Zaim, O., & Taskin, F. (2000a). A Kuznets curve in environmental efficiency: An application on OECD countries. Environmental and Resource Economics, 17, 21–36. · Zbl 0968.91025 · doi:10.1023/A:1008318605976
[378] Zaim, O., & Taskin, F. (2000b). Environmental efficiency in carbon dioxide emissions in the OECD: A non-parametric approach. Journal of Environmental Management, 58, 95–107. · doi:10.1006/jema.1999.0312
[379] Zaneslla, A., Camanho, A. S., & Dias, T. G. (2015). Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis. European Journal of Operational Research, 245, 517–530. · Zbl 1346.90453 · doi:10.1016/j.ejor.2015.03.036
[380] Zhang, Y., & Bartels, R. (1998). The effect of sample size on the mean efficiency in DEA with an application to electricity distribution in Australia, Sweden and New Zealand. Journal of Productivity Analysis, 9, 187–204. · doi:10.1023/A:1018395303580
[381] Zhang, B., Bi, J., Fan, Z., Yuan, Z., & Ge, J. (2008). Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecological Economics, 68, 306–316. · doi:10.1016/j.ecolecon.2008.03.009
[382] Zhang, X.-P., Cheng, X.-M., Yuan, J.-H., & Gao, X.-J. (2011). Total-factor energy efficiency in developing countries. Energy Policy, 39, 644–650. · doi:10.1016/j.enpol.2010.10.037
[383] Zhang, N., & Choi, Y. (2013a). A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy, 62, 324–332. · doi:10.1016/j.enpol.2013.07.060
[384] Zhang, N., & Choi, Y. (2013b). Environmental energy efficiency of China’s regional economies: A non-oriented slacks-based measure analysis. The Social Science Journal, 50, 225–234. · doi:10.1016/j.soscij.2013.01.003
[385] Zhang, N., & Choi, Y. (2014). A note on the evolution of directional distance function and its development in energy and environmental studies 1997-2013. Renewable and Sustainable Energy Reviews, 33, 50–59. · doi:10.1016/j.rser.2014.01.064
[386] Zhang, H.-Y., Ji, Q., & Fan, Y. (2013a). An evaluation framework for oil import security based on the supply chain with a case study focused on China. Energy Economics, 38, 87–95. · doi:10.1016/j.eneco.2013.03.014
[387] Zhang, N., Kong, F., & Yu, Y. (2015). Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecological Indicators, 51, 165–172. · doi:10.1016/j.ecolind.2014.07.041
[388] Zhang, Z., & Ye, J. (2015). Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China. Energy Economics, 47, 87–97. · doi:10.1016/j.eneco.2014.10.023
[389] Zhang, N., Zhou, P., & Choi, Y. (2013b). Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance function analysis. Energy Policy, 56, 653–662. · doi:10.1016/j.enpol.2013.01.033
[390] Zhao, X., Yang, R., & Ma, Q. (2014). China’s total factor energy efficiency of provincial industrial sectors. Energy, 65, 52–61. · doi:10.1016/j.energy.2013.10.078
[391] Zhou, P., & Ang, B. W. (2008a). Decomposition of aggregate CO2 emissions: A production-theoretical approach. Energy Economics, 30, 1054–1067. · doi:10.1016/j.eneco.2007.10.005
[392] Zhou, P., & Ang, B. W. (2008b). Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy, 36, 2911–2916. · doi:10.1016/j.enpol.2008.03.041
[393] Zhou, P., Ang, B. W., & Han, J. Y. (2010). Total factor carbon emission performance: A Malmquist index analysis. Energy Economics, 32, 194–201. · doi:10.1016/j.eneco.2009.10.003
[394] Zhou, P., Ang, B. W., & Poh, K. L. (2006a). Decision analysis in energy and environmental modeling: An update. Energy, 31, 2604–2622. · doi:10.1016/j.energy.2005.10.023
[395] Zhou, P., Ang, B. W., & Poh, K. L. (2006b). Slacks-based efficiency measures for modeling environmental performance. Ecological Economics, 60, 111–118. · doi:10.1016/j.ecolecon.2005.12.001
[396] Zhou, P., Ang, B. W., & Poh, K. L. (2007a). A mathematical programming approach to constructing composite indicators. Ecological Economics, 62, 291–297. · doi:10.1016/j.ecolecon.2006.12.020
[397] Zhou, P., Ang, B. W., & Poh, K. L. (2008a). A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research, 189, 1–18. · Zbl 1144.90425 · doi:10.1016/j.ejor.2007.04.042
[398] Zhou, P., Ang, B. W., & Poh, K. L. (2008b). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30, 1–14. · doi:10.1016/j.eneco.2006.05.001
[399] Zhou, P., Ang, B. W., & Wang, H. (2012a). Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. European Journal of Operational Research, 221, 625–635. · Zbl 1253.90236 · doi:10.1016/j.ejor.2012.04.022
[400] Zhou, P., Ang, B. W., & Zhou, D. Q. (2012b). Measuring economy-wide energy efficiency performance: A parametric frontier approach. Applied Energy, 90, 196–200. · doi:10.1016/j.apenergy.2011.02.025
[401] Zhou, G., Chung, W., & Zhang, X. (2013). A study of carbon dioxide emissions performance of China’s transport sector. Energy, 50, 302–314. · doi:10.1016/j.energy.2012.11.045
[402] Zhou, G., Chung, W., & Zhang, Y. (2014a). Measuring energy efficiency performance of China’s transport sector: A data envelopment analysis approach. Expert Systems with Applications, 41, 709–772. · doi:10.1016/j.eswa.2013.07.095
[403] Zhou, X., Fan, L. W., & Zhou, P. (2015). Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors. Energy Policy, 77, 109–117. · doi:10.1016/j.enpol.2014.12.009
[404] Zhou, P., Poh, K. L., & Ang, B. W. (2007b). A non-radial DEA approach to measuring environmental performance. European Journal of Operational Research, 178, 1–9. · Zbl 1110.90061 · doi:10.1016/j.ejor.2006.04.038
[405] Zhou, P., Sun, Z. R., & Zhou, D. Q. (2014b). Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis. Energy Economics, 45, 99–110. · doi:10.1016/j.eneco.2014.06.019
[406] Zofıo, J. L., & Prieto, A. M. (2001). Environmental efficiency and regulatory standards: The case of CO2 emissions from OECD industries. Resource and Energy Economics, 23, 63–83. · doi:10.1016/S0928-7655(00)00030-0
[407] Zou, G., Chen, L., Liu, W., Hong, X., Zhang, G., & Zhang, Z. (2013). Measurement and evaluation of Chinese regional energy efficiency based on provincial panel data. Mathematical and Computer Modelling, 58, 1000–1009. · doi:10.1016/j.mcm.2012.09.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.