×

Shock fluctuations for the Hammersley process. (English) Zbl 1364.82039

Summary: We consider the Hammersley interacting particle system starting from a shock initial profile with densities \(\rho ,\lambda \in {\mathbb R}\) \((\rho < \lambda)\). The microscopic shock is taken as the position of a second-class particle initially at the origin, and the main results are: (i) a central limit theorem for the shock; (ii) the variance of the shock equals \(2[\lambda \rho (\lambda - \rho )]^{-1}t + O(t^{2/3})\). By using the same method of proof, we also prove similar results for first-class particles.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60F05 Central limit and other weak theorems
60J75 Jump processes (MSC2010)
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Related Fields 103(2), 199-213 (1995) · Zbl 0836.60107 · doi:10.1007/BF01204214
[2] Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100(3-4), 523-541 (2000) · Zbl 0976.82043 · doi:10.1023/A:1018615306992
[3] Cator, E., Groeneboom, P.: Hammersley’s process with sources and sinks. Ann. Probab. 33(3), 879-903 (2005) · Zbl 1066.60011 · doi:10.1214/009117905000000053
[4] Cator, E., Groeneboom, P.: Second class particles and cube root asymptotics for Hammersley’s process. Ann. Probab. 34(4), 1273-1295 (2006) · Zbl 1101.60076 · doi:10.1214/009117906000000089
[5] Cator, E.A., Pimentel, L.P.R., Souza, M.W.A.: Influence of the initial condition in equilibrium last-passage percolation models. Electron. Commun. Probab. 17, 1-7 (2012) · Zbl 1247.60132 · doi:10.1214/ECP.v17-1727
[6] Ferrari, P.A.: Shocks in the Burgers equation and the asymmetric simple exclusion process. In: Statistical Physics, Automata Networks and Dynamical Systems (Santiago) pp. 25-64, Math. Appl., 75, Kluwer Academic, Dordrecht (1990) · Zbl 0764.60105
[7] Ferrari, P.A.: Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields 91(1), 81-101 (1992) · Zbl 0744.60117 · doi:10.1007/BF01194491
[8] Ferrari, P.A., Fontes, L.R.G.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Related Fields 99(2), 305-319 (1994) · Zbl 0801.60094 · doi:10.1007/BF01199027
[9] Ferrari, P.A., Martin, J.B.: Multiclass Hammersley-Aldous-Diaconis process and multiclass-customer queues. Ann. Inst. Henri Poincaré Probab. Stat. 45(1), 250-265 (2009) · Zbl 1171.60383 · doi:10.1214/08-AIHP168
[10] Hammersley, J. M.: A few seedlings of research. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (University California, Berkeley, CA, 1970/1971), Vol. I: Theory of statistics, pp. 345-394, University California Press, Berkeley, CA (1972) · Zbl 1066.60011
[11] Seppäläinen, T.: A microscopic model for the Burgers equation and longest increasing subsequences. Electron. J. Probab. 1, 5, approx. 51 pp. (electronic) (1996) · Zbl 0891.60093
[12] Seppäläinen, T.: Diffusive fluctuations for one-dimensional totally asymmetric interacting random dynamics. Commun. Math. Phys. 229(1), 141-182 (2002) · Zbl 1043.82028 · doi:10.1007/s002200200660
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.