×

The universal \(C^*\)-algebra of the electromagnetic field. II. Topological charges and spacelike linear fields. Dedicated to Karl-Henning Rehren on the occasion of his 60th birthday. (English) Zbl 1364.81238

Summary: Conditions for the appearance of topological charges are studied in the framework of the universal \(C^*\)-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of “spacelike linearity”. Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
For Part I see [the authors, ibid. 106, No. 2, 269–285 (2016; Zbl 1330.81201)].

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
81T05 Axiomatic quantum field theory; operator algebras
14F40 de Rham cohomology and algebraic geometry
46L05 General theory of \(C^*\)-algebras
46L60 Applications of selfadjoint operator algebras to physics

Biographic References:

Rehren, Karl-Henning

Citations:

Zbl 1330.81201

References:

[1] Araki, H., Haag, R., Schroer, B.: The determination of a local or almost local field from a given current. Nuovo Cimento 19, 90-102 (1961) · Zbl 0149.46405 · doi:10.1007/BF02812717
[2] Borchers, H.J.: Algebras of unbounded operators in quantum field theory. Physica A 124, 127-144 (1984) · Zbl 0599.47071 · doi:10.1016/0378-4371(84)90232-2
[3] Bostelmann, H.: Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 46, 052301 (2005) · Zbl 1110.81132 · doi:10.1063/1.1883313
[4] Bredon, G.B.: Topology and Geometry. Springer, New York (1993) · Zbl 0791.55001 · doi:10.1007/978-1-4757-6848-0
[5] Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541-1599 (2009) · Zbl 1201.81090 · doi:10.4310/ATMP.2009.v13.n5.a7
[6] Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982) · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[7] Buchholz, D., Ciolli, F., Ruzzi, G., Vasselli, E.: The universal C*-algebra of the electromagnetic field. Lett. Math. Phys. 106, 269-285 (2016). Erratum: Lett. Math. Phys. 106, 287 (2016) · Zbl 1330.81201
[8] Buchholz, D., Mack, G., Paunov, R.R., Todorov, I.T.: An algebraic approach to the classification of local conformal field theories, pp. 299-305. In: Davies, I.M., Simon, B., Truman, A. (eds.) IXth International Congress on Mathematical Physics. Swansea 1988, Adam Hilger, Bristol (1989) · Zbl 0735.46051
[9] Bouwmeester, D., Irvine, W.T.M.: Linked and knotted beams of light. Nat. Phys. 4, 716-720 (2008) · doi:10.1038/nphys1056
[10] Fredenhagen, K., Hertel, J.: Local algebras of observables and pointlike localized fields. Commun. Math. Phys. 80, 555-561 (1981) · Zbl 0472.46051 · doi:10.1007/BF01941663
[11] Gheorghe, A.H., Hall, D.S., Möttönen, D.S., Ray, M.W., Ruokowski, E., Tiurev, K.: Tying quantum knots. Nat. Phys. 12, 478-483 (2016) · doi:10.1038/nphys3624
[12] Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology, vol. 1. Academic Press, New York (1972) · Zbl 0322.58001
[13] Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848-861 (1964) · Zbl 0139.46003 · doi:10.1063/1.1704187
[14] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[15] Roberts, J.E.: A survey of local cohomology. In: Dell’Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.) Mathematical Problems in Theoretical Physics (Rome, 1977). Lecture Notes in Phys., vol. 80, pp. 81-93. Springer, Berlin (1978) · Zbl 0449.55009
[16] Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. W.A. Benjamin, New York (1964) · Zbl 0135.44305
[17] Steinmann, O.: Perturbative Quantum Electrodynamics and Axiomatic Field Theory. Springer, Berlin (2000) · Zbl 0946.81079 · doi:10.1007/978-3-662-04297-7
[18] Strocchi, F.: An Introduction to Non-Perturbative Foundations of Quantum Field Theory. Oxford University Press, Oxford (2013) · Zbl 1266.81002 · doi:10.1093/acprof:oso/9780199671571.001.0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.