×

Universality of the topological string at large radius and NS-brane resurgence. (English) Zbl 1364.81203

Summary: We show that there is a natural universal limit of the topological string free energies at the large radius point. The new free energies keep a nonholomorphic dependence on the complex structure moduli space and their functional form is the same for all Calabi-Yau geometries, compact and noncompact alike. The asymptotic nature of the free energy expansion changes in this limit due to a milder factorial growth of its coefficients, and this implies a transseries extension with instanton effects in \(\exp (- 1/g_s^2)\), of NS-brane type, rather than \(\exp (-1/g_s)\), of D-brane type. We show a relation between the instanton action of NS-brane type and the volume of the Calabi-Yau manifold which points to a possible interpretation in terms of NS5-branes. A similar rescaling limit has been considered recently leading to an Airy equation for the partition function which is here used to explain the resurgent properties of the rescaled transseries.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T45 Topological field theories in quantum mechanics
14J33 Mirror symmetry (algebro-geometric aspects)
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

References:

[1] Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. Comm. Math. Phys. 277(3), 771-819 (2008) · Zbl 1165.81037 · doi:10.1007/s00220-007-0383-3
[2] Alexandrov, S.Yu., Kazakov, V.A., Kutasov, D.: Nonperturbative effects in matrix models and D-branes. JHEP 09, 057 (2003) · Zbl 0815.53082
[3] Alim, M.: Lectures on mirror symmetry and topological string theory. arXiv:1207.0496 [hep-th] · Zbl 1316.14079
[4] Alim, M., Lange, J.D.: Polynomial structure of the (open) topological string partition function. JHEP 0710, 045 (2007) · doi:10.1088/1126-6708/2007/10/045
[5] Alim, M., Scheidegger, E.: Topological strings on elliptic fibrations. Commun. Num. Theor. Phys. 08, 729-800 (2014) · Zbl 1316.81075 · doi:10.4310/CNTP.2014.v8.n4.a4
[6] Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math. Phys. 18, 401-467 (2014) · Zbl 1314.14081 · doi:10.4310/ATMP.2014.v18.n2.a4
[7] Alim, M., Yau, S.-T., Zhou, J.: Airy equation for the topological string partition function in scaling limit. Lett. Math. Phys. 106(6), 719-729 (2016) · Zbl 1338.81305 · doi:10.1007/s11005-016-0840-z
[8] Becker, K., Becker, M., Strominger, A.: Five-branes, membranes and nonperturbative string theory. Nucl. Phys. B 456, 130-152 (1995) · Zbl 0925.81161 · doi:10.1016/0550-3213(95)00487-1
[9] Bender, C.M., Wu, T.T.: Anharmonic oscillator II a study of pertubation theory in large order. Phys. Rev. D 7, 1620-1636 (1973) · doi:10.1103/PhysRevD.7.1620
[10] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B 405, 279-304 (1993) · Zbl 0908.58074 · doi:10.1016/0550-3213(93)90548-4
[11] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311-428 (1994) · Zbl 0815.53082 · doi:10.1007/BF02099774
[12] Callan, C.G., Harvey, J.A., Strominger, A.: World sheet approach to heterotic instantons and solitons. Nucl. Phys. B359, 611-634 (1991)
[13] Callan, C.G., Harvey, J.A., Strominger, A.: Worldbrane actions for string solitons. Nucl. Phys. B367, 60-82 (1991) · Zbl 0716.53068
[14] Candelas, P., De La Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[15] Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local \[{\mathbb{C}\mathbb{P}^2}\] CP2. Commun. Math. Phys. 338(1), 285-346 (2015) · Zbl 1318.81051 · doi:10.1007/s00220-015-2358-0
[16] Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly. Ann. H. Poincaré 17(2), 331-399 (2016) · Zbl 1333.81237 · doi:10.1007/s00023-015-0407-z
[17] Couso-Santamaría, R., Mariño, M., Schiappa, R.: Work in progress · Zbl 0716.53068
[18] Drukker, N., Mariño, M., Putrov, P.: Nonperturbative aspects of ABJM theory. JHEP 1111, 141 (2011) · Zbl 1306.81219 · doi:10.1007/JHEP11(2011)141
[19] Écalle, J.: Les fonctions resurgentes, Prépub. Math. Université 81-05 (1981), 81-06 (1981), 85-05 (1985) · Zbl 0499.30034
[20] Écalle, J.: Cinq applications des fonctions résurgentes. Publ. Math. d’Orsay, 84-62 (1984)
[21] Grassi, A., Hatsuda, Y., Mariño, M.: Topological strings from quantum mechanics. Ann. H. Poincaré, 1-59 (2015) · Zbl 1365.81094
[22] Gross, D.J., Periwal, V.: String perturbation theory diverges. Phys. Rev. Lett. 60, 2105 (1988) · doi:10.1103/PhysRevLett.60.2105
[23] Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008) · Zbl 1245.81173 · doi:10.1088/1126-6708/2008/10/097
[24] Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 03, 060 (2008) · doi:10.1088/1126-6708/2008/03/060
[25] Mariño, M.: Lectures on non-perturbative effects in large \[NN\] gauge theories, matrix models and strings. Fortsch. Phys. 62, 455-540 (2014) · Zbl 1338.81335 · doi:10.1002/prop.201400005
[26] Mariño, M.: Spectral theory and mirror symmetry. arXiv:1506.07757 [math-ph] · Zbl 1452.14040
[27] Mariño, M., Schiappa, R., Weiss, M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Num. Theor. Phys. 2, 349-419 (2008) · Zbl 1153.81526 · doi:10.4310/CNTP.2008.v2.n2.a3
[28] Martinec, E.J.: The Annular report on noncritical string theory. arXiv:hep-th/0305148 [hep-th]
[29] Pasquetti, S., Schiappa, R.: Borel and Stokes nonperturbative phenomena in topological string theory and c \[== 1\] matrix models. Ann. H. Poincaré 11, 351-431 (2010) · Zbl 1208.81170 · doi:10.1007/s00023-010-0044-5
[30] Pioline, B., Vandoren, S.: Large D-instanton effects in string theory. JHEP 07, 008 (2009) · doi:10.1088/1126-6708/2009/07/008
[31] Polchinski, J.: Combinatorics of boundaries in string theory. Phys. Rev. D 50, 6041-6045 (1994) · doi:10.1103/PhysRevD.50.R6041
[32] Sauzin, D.: Introduction to 1-summability and the resurgence theory. arXiv:1405.0356 [hep-th] · Zbl 1191.34104
[33] Shenker, S.: The strength of nonperturbative effects in string theory. In: Alvarez, O., Marinari, E., Windey, P. (eds.) Random surfaces and quantum gravity, vol. 262 of NATO ASI Series, pp. 191-200. Springer USA (1991) · Zbl 1098.32506
[34] Simon, B.: Coupling constant analyticity for the anharmonic oscillator (with an appendix by a. dicke). Ann. Phys. 58, 76-136 (1970) · doi:10.1016/0003-4916(70)90240-X
[35] Strominger, A.: Heterotic solitons. Nucl. Phys. B 343, 167-184 (1990) · doi:10.1016/0550-3213(90)90599-9
[36] Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163-180 (1990) · Zbl 0716.53068 · doi:10.1007/BF02096559
[37] Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. JHEP 0407, 047 (2004) · doi:10.1088/1126-6708/2004/07/047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.