×

On the generalization of Reissner plate theory to laminated plates. I: Theory. (English) Zbl 1364.74041

Summary: This is the first part of a two-part paper presenting the generalization of E. Reissner thick plate theory [J. Math. Phys., Mass. Inst. Techn. 23, 184–191 (1944; Zbl 0061.42501)] to laminated plates and its relation with the Bending-Gradient theory [the authors, “A Bending-Gradient model for thick plates. I: Theory”, Int. J. Solids Struct. 48, No. 20, 2878–2888 (2011; doi:10.1016/j.ijsolstr.2011.06.006); “A Bending-Gradient model for thick plates. II: Closed-form solutions for cylindrical bending of laminates”, ibid. 48, No. 20, 2889–2901 (2011; doi:10.1016/j.ijsolstr.2011.06.005)]. The original thick and homogeneous plate theory derived by Reissner [loc. cit.] is based on the derivation of a statically compatible stress field and the application of the principle of minimum of complementary energy. The static variables of this model are the bending moment and the shear force. In the present paper, the rigorous extension of this theory to laminated plates is presented and leads to a new plate theory called Generalized-Reissner theory which involves the bending moment, its first and second gradients as static variables. When the plate is homogeneous or functionally graded, the original theory from Reissner is retrieved. In the second paper [the authors, ibid. 126, No. 1, 67–94 (2017; Zbl 1364.74042)], the Bending-Gradient theory is obtained from the Generalized-Reissner theory and comparison with an exact solution for the cylindrical bending of laminated plates is presented.

MSC:

74G65 Energy minimization in equilibrium problems in solid mechanics
74K20 Plates
Full Text: DOI

References:

[1] Allen, H.: Analysis and Design of Structural Sandwich Panels. Pergamon, Elmsford (1969)
[2] Altenbach, H.: Theories for laminated and sandwich plates. Mech. Compos. Mater. 34(3), 243-252 (1998) · doi:10.1007/BF02256043
[3] Altenbach, H., Eremeyev, V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775-794 (2008) · Zbl 1161.74426 · doi:10.1007/s00419-007-0192-3
[4] Caillerie, D.: Thin elastic and periodic plates. Math. Methods Appl. Sci. 6(1), 159-191 (1984) · Zbl 0543.73073 · doi:10.1002/mma.1670060112
[5] Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87-140 (2002) · Zbl 1062.74048 · doi:10.1007/BF02736649
[6] Chiang, C.J., Winscom, C., Bull, S., Monkman, A.: Mechanical modeling of flexible OLED devices. Org. Electron. 10(7), 1268-1274 (2009) · doi:10.1016/j.orgel.2009.07.003
[7] Ciarlet, P.G.: Mathematical Elasticity—Volume II: Theory of Plates. Elsevier, Amsterdam (1997) · Zbl 0888.73001
[8] Ciarlet, P.G., Destuynder, P.: Justification of the 2-dimensional linear plate model. J. Mech. 18(2), 315-344 (1979) · Zbl 0415.73072
[9] Dauge, M., Gruais, I.: Developpement asymptotique d’ordre arbitraire pour une plaque elastique mince encastree. C. R. Acad. Sci., Sér. 1 Math. 321(3), 375-380 (1995) · Zbl 0837.73033
[10] Dauge, M., Gruais, I., Rössle, A.: The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31(2), 305-345 (2000) · Zbl 0958.74034 · doi:10.1137/S0036141098333025
[11] Eisenträger, J., Naumenko, K., Altenbach, H., Köppe, H.: Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels. Int. J. Mech. Sci. 96-97, 163-171 (2015) · doi:10.1016/j.ijmecsci.2015.03.012
[12] Eisenträger, J., Naumenko, K., Altenbach, H., Meenen, J.: A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos. Struct. 133, 265-277 (2015) · doi:10.1016/j.compstruct.2015.07.049
[13] Forest, S., Sab, K.: Stress gradient continuum theory. Mech. Res. Commun. 40, 16-25 (2012) · doi:10.1016/j.mechrescom.2011.12.002
[14] Franzoni, L., Lebée, A., Lyon, F., Foret, G.: Influence of orientation and number of layers on the elastic response and failure modes on CLT floors: modeling and parameter studies. Eur. J. Wood Prod. (2016). doi:10.1007/s00107-016-1038-x · doi:10.1007/s00107-016-1038-x
[15] Hencky, H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ing.-Arch. 16(1), 72-76 (1947) · Zbl 0030.04301 · doi:10.1007/BF00534518
[16] Koizumi, M.: FGM activities in Japan. Composites, Part B, Eng. 28(1-2), 1-4 (1997) · doi:10.1016/S1359-8368(96)00016-9
[17] Lebée, A., Sab, K.: A bending-gradient model for thick plates. Part I: theory. Int. J. Solids Struct. 48(20), 2878-2888 (2011) · doi:10.1016/j.ijsolstr.2011.06.006
[18] Lebée, A., Sab, K.: A bending-gradient model for thick plates. Part II: closed-form solutions for cylindrical bending of laminates. Int. J. Solids Struct. 48(20), 2889-2901 (2011) · doi:10.1016/j.ijsolstr.2011.06.005
[19] Lebée, A., Sab, K.: Homogenization of thick periodic plates: application of the Bending-Gradient plate theory to a folded core sandwich panel. Int. J. Solids Struct. 49(19-20), 2778-2792 (2012) · doi:10.1016/j.ijsolstr.2011.12.009
[20] Lebée, A., Sab, K.: Homogenization of a space frame as a thick plate: application of the Bending-Gradient theory to a beam lattice. Comput. Struct. 127, 88-101 (2013) · doi:10.1016/j.compstruc.2013.01.011
[21] Lebée, A.; Sab, K.; Altenbach, H. (ed.); Forest, S. (ed.); Krivtsov, A. (ed.), Justification of the Bending-Gradient theory through asymptotic expansions, 217-236 (2013), Berlin
[22] Lebée, A., Sab, K.: On the generalization of Reissner plate theory to laminated plates, Part II: comparison with the Bending-Gradient theory (2015). doi:10.1007/s10659-016-9580-7 · Zbl 1364.74042
[23] March, H.W.: Bending of a centrally loaded rectangular strip of plywood. Physics (Coll. Park Md.) 7(1), 32 (1936) · JFM 62.1536.02
[24] Mindlin, R.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31-38 (1951) · Zbl 0044.40101
[25] Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112(1), 283-291 (2014) · doi:10.1016/j.compstruct.2014.02.009
[26] Nguyen, T.K., Sab, K., Bonnet, G.: Shear correction factors for functionally graded plates. Mech. Adv. Mat. Struct. 14(8), 567-575 (2007) · doi:10.1080/15376490701672575
[27] Nguyen, T.K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83(1), 25-36 (2008) · doi:10.1016/j.compstruct.2007.03.004
[28] Nguyen, T.k., Sab, K., Bonnet, G.: Green’s operator for a periodic medium with traction-free boundary conditions and computation of the effective properties of thin plates. Int. J. Solids Struct. 45(25-26), 6518-6534 (2008) · Zbl 1168.74424 · doi:10.1016/j.ijsolstr.2008.08.015
[29] Noor, A.K., Malik, M.: An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels. Comput. Mech. 25(1), 43-58 (2000) · Zbl 1117.74301 · doi:10.1007/s004660050014
[30] Reddy, J.N.: On refined computational models of composite laminates. Int. J. Numer. Methods Eng. 27(2), 361-382 (1989) · Zbl 0724.73234 · doi:10.1002/nme.1620270210
[31] Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184-191 (1944) · Zbl 0061.42501 · doi:10.1002/sapm1944231184
[32] Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), 69-77 (1945) · Zbl 0063.06470
[33] Reissner, E.: On bending of elastic plates. Q. Appl. Math. 5(1), 55-68 (1947) · Zbl 0030.04302 · doi:10.1090/qam/20440
[34] Reissner, E.: On a variational theorem in elasticity. J. Math. Phys. 29(90) (1950) · Zbl 0039.40502
[35] Reissner, E., Stavsky, Y.: Bending and stretching of certain types of heterogeneous aeolotropic elastic plates. J. Appl. Mech. 28, 402 (1961) · Zbl 0100.20904 · doi:10.1115/1.3641719
[36] Schulze, S.H., Pander, M., Naumenko, K., Altenbach, H.: Analysis of laminated glass beams for photovoltaic applications. Int. J. Solids Struct. 49(15-16), 2027-2036 (2012) · doi:10.1016/j.ijsolstr.2012.03.028
[37] Weps, M., Naumenko, K., Altenbach, H.: Unsymmetric three-layer laminate with soft core for photovoltaic modules. Compos. Struct. 105, 332-339 (2013) · doi:10.1016/j.compstruct.2013.05.029
[38] Whitney, J.M., Leissa, A.W.: Analysis of heterogeneous anisotropic plates. J. Appl. Mech. 36(2), 261 (1969) · Zbl 0181.52603 · doi:10.1115/1.3564618
[39] Yim, M.J., Paik, K.W.: Recent advances on anisotropic conductive adhesives (ACAs) for flat panel displays and semiconductor packaging applications. Int. J. Adhes. Adhes. 26(5), 304-313 (2006) · doi:10.1016/j.ijadhadh.2005.04.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.