×

Multi-conformal-symplectic PDEs and discretizations. (English) Zbl 1364.65169

Summary: Past work on integration methods that preserve a conformal symplectic structure focuses on Hamiltonian systems with weak linear damping. In this work, systems of PDEs that have conformal symplectic structure in time and space are considered, meaning conformal symplecticity is fully generalized for PDEs. Using multiple examples, it is shown that PDEs with this particular structure have interesting applications. What it means to preserve a multi-conformal-symplectic conservation law numerically is explained, along with presentation of two numerical methods that preserve such properties. Then, the advantages of the methods are briefly explored through applications to linear equations, consideration of momentum and energy dissipation, and backward error analysis. Numerical simulations for two PDEs illustrate the properties of the methods, as well as the advantages over other standard methods.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
37L50 Noncompact semigroups, dispersive equations, perturbations of infinite-dimensional dissipative dynamical systems
Full Text: DOI

References:

[1] Bridges, T. J.; Reich, S., Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284, 184-193 (2001) · Zbl 0984.37104
[2] Marsden, J. E.; Patrick, G. P.; Shkoller, S., Multi-symplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199, 351-395 (1998) · Zbl 0951.70002
[3] McLachlan, R. I., Symplectic integration of Hamiltonian wave equations, Numer. Math., 66, 465-492 (1994) · Zbl 0831.65099
[4] Reich, S., Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157, 473-499 (2000) · Zbl 0946.65132
[5] Armero, F.; Romero, I., On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. I. Low-order methods for two model problems and nonlinear elastodynamics, Comput. Methods Appl. Mech. Engrg., 190, 2603-2649 (2001) · Zbl 1008.74035
[6] Armero, F.; Romero, I., On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. II. Second-order methods, Comput. Methods Appl. Mech. Engrg., 190, 6783-6824 (2001) · Zbl 1068.74022
[7] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, Internat. J. Numer. Methods Engrg., 49, 1295-1325 (2000) · Zbl 0969.70004
[8] Matsuo, T.; Furihata, D., A stabilization of multistep linearly implicit schemes for dissipative systems, J. Comput. Appl. Math., 264, 38-48 (2014) · Zbl 1294.65083
[9] Furihata, D., Finite difference schemes for \(\frac{\partial u}{\partial t} = (\frac{\partial}{\partial x})^\alpha \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property, J. Comput. Phys., 156, 181-205 (1999) · Zbl 0945.65103
[10] Matsuo, T.; Furihata, D., Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171, 425-447 (2001) · Zbl 0993.65098
[11] Moore, B. E.; Noreña, L.; Schober, C., Conformal conservation laws and geometric integration for damped Hamiltonian PDEs, J. Comput. Phys., 232, 214-233 (2013) · Zbl 1291.35129
[12] McLachlan, R. I.; Perlmutter, M., Conformal Hamiltonian systems, J. Geom. Phys., 39, 276-300 (2001) · Zbl 1005.53058
[13] McLachlan, R. I.; Quispel, G. R.W., What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14, 1689-1705 (2001) · Zbl 0994.65138
[14] McLachlan, R. I.; Quispel, G. R.W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[15] Modin, K.; Söderlind, G., Geometric integration of Hamiltonian systems perturbed by Rayleigh damping, BIT, 51, 977-1007 (2011) · Zbl 1237.65140
[16] Bhatt, A.; Floyd, D.; Moore, B. E., Second order conformal symplectic schemes for damped Hamiltonian systems, J. Sci. Comput. (2015)
[17] Kong, X.; Wu, H.; Mei, F., Stucture-preserving algorithms for Birkhoffian systems, J. Geom. Phys., 62, 1157-1166 (2012) · Zbl 1259.37050
[18] Sun, Y.; Shang, Z., Structure-preserving algorithms for Birkhoffian systems, Phys. Lett. A, 336, 358-369 (2005) · Zbl 1136.70322
[19] Bridges, T. J., Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc. London A, 121, 147-190 (1997) · Zbl 0892.35123
[20] Bridges, T. J.; Reich, S., Numerical methods for Hamiltonian PDEs, J. Phys. A: Math. Gen., 39, 5287-5320 (2006) · Zbl 1090.65138
[21] Moore, B. E., Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations, Math. Comput. Simulation, 80, 20-28 (2009) · Zbl 1177.65182
[22] Su, H.; Qin, M.; Wang, Y.; Scherer, R., Multi-symplectic Birkhoffian structure for PDEs with dissipation terms, Phys. Lett. A, 374, 2410-2416 (2010) · Zbl 1237.37055
[23] Mickens, R. E., A nonstandard finite difference scheme for diffusionless Burgers equation with logistic reaction, Math. Comput. Simulation, 62, 117-124 (2003) · Zbl 1015.65036
[24] Segur, H.; Henderson, D.; Carter, J.; Hammack, J.; Li, C.-M.; Pheiff, D.; Socha, K., Stabilizing the Benjamin-Feir instability, J. Fluid Mech., 539, 229-271 (2005) · Zbl 1120.76022
[25] Fushchych, W. I.; Symenoh, Z. I., Symmetry of equations with convection terms, J. Nonlinear Math. Phys., 4, 470-479 (1997) · Zbl 0948.35063
[26] Asadzadeh, M.; Rostamy, D.; Zabihi, F., Discontinuous Galerkin and multiscale variational schemes for a coupled damped nonlinear system of Schrödinger equations, Numer. Methods Partial Differential Equations, 29, 1912-1945 (2013) · Zbl 1307.65129
[27] Kingstona, J. G.; Sophocleousb, C., Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation, Internat. J. Non-Linear Mech., 36, 987-997 (2001) · Zbl 1345.35063
[28] Alexander, J. C.; Auchmuty, G., Bifurcation analysis of reaction-diffusion equations. VI. Multiply periodic travelling waves, SIAM J. Math. Anal., 19, 100-109 (1988) · Zbl 0705.35071
[29] Moore, B. E.; Reich, S., Backward error analysis for multi-symplectic integration methods, Numer. Math., 95, 625-652 (2003) · Zbl 1033.65113
[30] Ascher, U. M.; McLachlan, R. I., Multi-symplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48, 255-269 (2004) · Zbl 1038.65138
[31] Frank, J.; Moore, B. E.; Reich, S., Linear PDEs and numerical methods that preserve a multi-symplectic conservation law, SIAM J. Sci. Comput., 28, 260-277 (2006) · Zbl 1113.65117
[32] Moore, B. E.; Reich, S., Multi-symplectic integration methods for Hamiltonian PDEs, Future Gener. Comput. Syst., 19, 395-402 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.