×

Conversion of trimmed NURBS surfaces to Catmull-Clark subdivision surfaces. (English) Zbl 1364.65046

Summary: This paper introduces a novel method to convert trimmed NURBS surfaces to untrimmed subdivision surfaces with Bézier edge conditions. We take a NURBS surface and its trimming curves as input, from this we automatically compute a base mesh, the limit surface of which fits the trimmed NURBS surface to a specified tolerance. We first construct the topology of the base mesh by performing a cross-field based decomposition in parameter space. The number and positions of extraordinary vertices required to represent the trimmed shape can be automatically identified by smoothing a cross field bounded by the parametric trimming curves. After the topology construction, the control point positions in the base mesh are calculated based on the limit stencils of the subdivision scheme and constraints to achieve tangential continuity across the boundary. Our method provides the user with either an editable base mesh or a fine mesh whose limit surface approximates the input within a certain tolerance. By integrating the trimming curve as part of the desired limit surface boundary, our conversion can produce gap-free models. Moreover, since we use tangential continuity across the boundary between adjacent surfaces as constraints, the converted surfaces join with \(G^1\) continuity.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)

References:

[1] Andersson, L. E.; Stewart, N. F., Introduction to the Mathematics of Subdivision Surfaces (2010), Society for Industrial and Applied Mathematics · Zbl 1207.68412
[2] Bommes, D.; Campen, M.; Ebke, H. C.; Alliez, P.; Kobbelt, L., Integer-grid maps for reliable quad meshing, ACM Trans. Graph., 32, 98 (2013) · Zbl 1305.68209
[3] Bommes, D.; Lévy, B.; Pietroni, N.; Puppo, E.; Silva, T. C.; Tarini, M.; Zorin, D., State of the art in quad meshing, (Eurographics STARS (2012))
[4] Bommes, D.; Zimmer, H.; Kobbelt, L., Mixed-integer quadrangulation, ACM Trans. Graph., 28, 77 (2009)
[5] Campen, M.; Bommes, D.; Kobbelt, L., Dual loops meshing: quality quad layouts on manifolds, ACM Trans. Graph., 31, 110 (2012)
[6] Cashman, T. J.; Augsdörfer, U. H.; Dodgson, N. A.; Sabin, M. A., NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes, ACM Trans. Graph., 28, 46 (2009)
[7] Cashman, T. J.; Dodgson, N. A.; Sabin, M. A., A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines, Comput. Aided Geom. Des., 26, 94-104 (2009) · Zbl 1205.65045
[8] Cashman, T. J.; Dodgson, N. A.; Sabin, M. A., Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision, Comput. Aided Geom. Des., 26, 472-479 (2009) · Zbl 1205.65046
[9] Catmull, E.; Clark, J., Recursively generated B-spline surfaces on arbitrary topological meshes, Comput. Aided Des., 10, 350-355 (1978)
[10] Che, X.; Liang, X.; Li, Q., Continuity conditions of adjacent NURBS surfaces, Comput. Aided Geom. Des., 22, 285-298 (2005) · Zbl 1080.65012
[11] DeRose, T.; Kass, M.; Truong, T., Subdivision surfaces in character animation, (SIGGRAPH ’98 (1998), ACM Press: ACM Press New York, USA), 85-94
[12] Dong, S.; Bremer, P. T.; Garland, M.; Pascucci, V.; Hart, J. C., Spectral surface quadrangulation, ACM Trans. Graph., 25, 1057-1066 (2006)
[13] Farin, G., Curves and surfaces for CAGD: a practical guide (2001), Morgan Kaufmann Publishers Inc
[14] Farin, G.; Hoschek, J.; Kim, M. S., Intersection problems, (Handbook of Computer Aided Geometric Design (2002)), 623-649 · Zbl 1003.68179
[15] Halstead, M.; Kass, M.; DeRose, T., Efficient, fair interpolation using Catmull-Clark surfaces, (SIGGRAPH ’93 (1993), ACM Press: ACM Press New York, USA), 35-44
[16] Hamann, B.; Tsai, P. Y., A tessellation algorithm for the representation of trimmed NURBS surfaces with arbitrary trimming curves, Comput. Aided Des., 28, 461-472 (1996)
[17] Huang, J.; Zhang, M.; Ma, J.; Liu, X.; Kobbelt, L.; Bao, H., Spectral quadrangulation with orientation and alignment control, ACM Trans. Graph., 27, 147 (2008)
[18] Hui, K.; Wu, Y. B., Feature-based decomposition of trimmed surface, Comput. Aided Des., 37, 859-867 (2005)
[19] Kälberer, F.; Nieser, M.; Polthier, K., QuadCover - surface parameterization using branched coverings, Comput. Graph. Forum, 26, 375-384 (2007) · Zbl 1259.65025
[20] Kobbelt, L., Polygon Mesh Processing (2010), A K Peters Limited
[21] Lacewell, D.; Burley, B., Exact evaluation of Catmull-Clark subdivision surfaces near B-spline boundaries, J. Graph. GPU Game Tools, 12, 7-15 (2007)
[22] Li, X.; Chen, F., Exact and approximate representations of trimmed surfaces with NURBS and Bézier surfaces, (CAD/Graphics (2009)), 286-291
[23] Liu, Y.; Xu, W.; Wang, J.; Zhu, L.; Guo, B.; Chen, F.; Wang, G., General planar quadrilateral mesh design using conjugate direction field, ACM Trans. Graph., 30, 140 (2011)
[24] Loop, C.; Schaefer, S., Approximating Catmull-Clark subdivision surfaces with bicubic patches, ACM Trans. Graph., 27, 8 (2008)
[25] Loop, C.; Schaefer, S.; Ni, T.; Castaño, I., Approximating subdivision surfaces with Gregory patches for hardware tessellation, ACM Trans. Graph., 28, 151 (2009)
[26] Müller, K.; Fünfzig, C.; Reusche, L.; Hansford, D.; Farin, G.; Hagen, H., Dinus: double insertion, nonuniform, stationary subdivision surfaces, ACM Trans. Graph., 29, 25 (2010)
[27] Müller, K.; Reusche, L.; Fellner, D., Extended subdivision surfaces: building a bridge between NURBS and Catmull-Clark surfaces, ACM Trans. Graph., 25, 268-292 (2006)
[28] Palacios, J.; Zhang, E., Rotational symmetry field design on surfaces, ACM Trans. Graph., 26, 55 (2007)
[29] Palacios, J.; Zhang, E., Interactive visualization of rotational symmetry fields on surfaces, IEEE Trans. Vis. Comput. Graph., 17, 947-955 (2010)
[30] Ray, N.; Li, W. C.; Lévy, B.; Sheffer, A.; Alliez, P., Periodic global parameterization, ACM Trans. Graph., 25, 1460-1485 (2006)
[31] Ray, N.; Vallet, B.; Li, W. C.; Lévy, B., N-symmetry direction field design, ACM Trans. Graph., 27, 10 (2008)
[32] Reusche, L., Conversion of trimmed NURBS surfaces into subdivision surfaces (2005), Technical University Braunschweig: Technical University Braunschweig Germany, Ph.D. thesis
[33] Sabin, M. A., Analysis and Design of Univariate Subdivision Schemes (2010), Springer · Zbl 1215.68002
[34] Schmidt, R.; Wüchner, R.; Bletzinger, K. U., Isogeometric analysis of trimmed NURBS geometries, Comput. Methods Appl. Mech. Eng., 241-244, 93-111 (2012) · Zbl 1353.74079
[35] Sederberg, T. W.; Finnigan, G. T.; Li, X.; Lin, H.; Ipson, H., Watertight trimmed NURBS, ACM Trans. Graph., 27, 79 (2008)
[36] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-NURCCs, ACM Trans. Graph., 22, 477-484 (2003)
[37] Sederberg, T. W.; Zheng, J.; Sewell, D.; Sabin, M., Non-uniform recursive subdivision surfaces, (SIGGRAPH ’98 (1998), ACM Press: ACM Press New York, USA), 387-394
[38] Song, Q.; Wang, J., Generating parametric blending surfaces based on partial reparameterization of base surfaces, Comput. Aided Des., 39, 953-963 (2007)
[39] Stam, J., Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values, (SIGGRAPH ’98 (1998), ACM Press: ACM Press New York, USA), 395-404
[40] Zhang, E.; Mischaikow, K.; Turk, G., Vector field design on surfaces, ACM Trans. Graph., 25, 1294-1326 (2006)
[41] Zhang, M.; Huang, J.; Liu, X.; Bao, H., A wave-based anisotropic quadrangulation method, ACM Trans. Graph., 29, 118 (2010)
[42] Zhang, M.; Huang, J.; Liu, X.; Bao, H., A divide-and-conquer approach to quad remeshing, IEEE Trans. Vis. Comput. Graph., 19, 941-952 (2013)
[43] Zorin, D.; Kristjansson, D., Evaluation of piecewise smooth subdivision surfaces, Vis. Comput., 18, 299-315 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.