×

Residue fields for a class of rational \(\mathbf E_{\infty}\)-rings and applications. (English) Zbl 1364.55017

The author develops various results about the homotopy theory of “rational \(E_{\infty}\)-rings” which are noetherian in a sense explained below. The rational \(E_{\infty}\)-rings considered here are equivalent to unbounded commutative differential algebras over the rationals or to commutative structured ring spectra over \(H\mathbb Q\), the Eilenberg-Mac Lane spectrum of the rationals.
A rational \(E_{\infty}\)-ring \(A\) is defined to be noetherian if the ring of even degree homotopy groups \(\pi_{\mathrm{even}}(A)\) is noetherian and if the odd degree homotopy groups \(\pi_{\mathrm{odd}}(A)\) form a finitely generated module over \(\pi_{\mathrm{even}}(A)\). The first main result is that every rational noetherian \(E_{\infty}\)-ring \(A\) with a unit in degree 2 admits residue fields. That is, for every prime ideal \(\mathfrak p\) in \(\pi_0(A)\) there exists a unique \(E_{\infty}\)-algebra \(\kappa(\mathfrak p)\) under \(A\) which is even periodic and which induces the reduction \(\pi_0(A) \to \pi_0(A)_{\mathfrak p}/{\mathfrak p}\pi_0(A)_{\mathfrak p}\) on \(\pi_0\).
One application of the existence of fraction fields is a nilpotence theorem that is analogous to (but easier to prove than) the important Hopkins-Smith nilpotence theorem. It states that if \(A\) is as above and \(B\) is an \(A\)-algebra, an element in \(\pi_*(B)\) is nilpotent if and only if for every prime ideal \(\mathfrak p \subset \pi_0(A)\) its image in \(\pi_*(B \otimes_A \kappa(\mathfrak p))\) is nilpotent. Another application is a thick subcategory theorem that provides a classification of thick subcategories of the category of perfect \(A\)-modules in terms of specialization-closed subsets of the collection of homogeneous prime ideals of \(\pi_{\mathrm{even}}(A)\).
In earlier work [Adv. Math. 291, 403–541 (2016; Zbl 1338.55009)], the author defined the Galois group of a stable homotopy theory (or, more precisely, of a suitable symmetric monoidal stable \(\infty\)-category). Another result proved in the present paper is that the Galois group of the category of \(A\)-modules admits a purely algebraic description if \(A\) is a noetherian rational \(E_{\infty}\)-ring. The author also shows that for such \(A\), the cokernel of the map of Picard groups \(\mathrm{Pic}(\pi_*(A)) \to \mathrm{Pic}(A)\) is torsion-free.
In the last section, the author discusses examples of non-noetherian rational \(E_{\infty}\)-rings that illustrate the failure of various of the above results in the non-noetherian case. The examples include a Galois extension (in the sense of J. Rognes [Mem. Am. Math. Soc. 898, 137 p. (2008; Zbl 1166.55001)]) of rational ring spectra which is not of algebraic origin.

MSC:

55U35 Abstract and axiomatic homotopy theory in algebraic topology
55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
16E45 Differential graded algebras and applications (associative algebraic aspects)

References:

[1] Ando, Matthew; Blumberg, Andrew J.; Gepner, David; Hopkins, Michael J.; Rezk, Charles, An ∞-categorical approach to \(R\)-line bundles, \(R\)-module Thom spectra, and twisted \(R\)-homology, J. Topol., 7, 3, 869-893 (2014) · Zbl 1312.55011
[2] Balmer, Paul, The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., 588, 149-168 (2005) · Zbl 1080.18007
[3] Balmer, Paul, Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of endomorphism rings, Algebraic Geom. Topol., 10, 3, 1521-1563 (2010) · Zbl 1204.18005
[4] Bhatt, Bhargav; Halpern-Leistner, Daniel, Tannaka duality revisited (2015), available at · Zbl 1401.14013
[5] Bruner, R. R.; May, J. P.; McClure, J. E.; Steinberger, M., \(H_\infty\) Ring Spectra and Their Applications, Lect. Notes Math., vol. 1176 (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.55016
[6] Baker, Andrew; Richter, Birgit, Invertible modules for commutative \(S\)-algebras with residue fields, Manuscr. Math., 118, 1, 99-119 (2005) · Zbl 1092.55007
[7] Baker, Andrew; Richter, Birgit, Realizability of algebraic Galois extensions by strictly commutative ring spectra, Trans. Am. Math. Soc., 359, 2, 827-857 (2007), (electronic) · Zbl 1111.55009
[8] Baker, Andrew; Richter, Birgit, Galois extensions of Lubin-Tate spectra, Homol. Homotopy Appl., 10, 3, 27-43 (2008) · Zbl 1175.55007
[9] Cohen, Frederick R.; Lada, Thomas J.; May, J. Peter, The Homology of Iterated Loop Spaces, Lect. Notes Math., vol. 533 (1976), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0334.55009
[10] Devinatz, Ethan S.; Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. I, Ann. Math. (2), 128, 2, 207-241 (1988) · Zbl 0673.55008
[11] Eisenbud, David, Commutative Algebra: With a View Towards Algebraic Geometry, Grad. Texts Math., vol. 150 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0819.13001
[12] Elmendorf, A. D.; Kriz, I.; Mandell, M. A.; May, J. P., Rings, Modules, and Algebras in Stable Homotopy Theory, Math. Surv. Monogr., vol. 47 (1997), American Mathematical Society: American Mathematical Society Providence, RI, With an appendix by M. Cole · Zbl 0894.55001
[13] Fossum, Robert M., The Divisor Class Group of a Krull Domain, Ergeb. Math. Ihrer Grenzgeb., vol. 74 (1973), Springer-Verlag: Springer-Verlag New York, Heidelberg · Zbl 0256.13001
[14] Grothendieck, Alexander, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), (Séminaire de Géométrie Algébrique du Bois Marie. Séminaire de Géométrie Algébrique du Bois Marie, Doc. Math. (Paris), vol. 4 (2005), Société Mathématique de France: Société Mathématique de France Paris), 1962, Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original · Zbl 1079.14001
[15] Hopkins, Michael J.; Mahowald, Mark; Sadofsky, Hal, Constructions of elements in Picard groups, (Topology and Representation Theory. Topology and Representation Theory, Evanston, IL, 1992. Topology and Representation Theory. Topology and Representation Theory, Evanston, IL, 1992, Contemp. Math., vol. 158 (1994), American Mathematical Society: American Mathematical Society Providence, RI), 89-126 · Zbl 0799.55005
[16] Hovey, Mark; Palmieri, John H.; Strickland, Neil P., Axiomatic Stable Homotopy Theory, Mem. Am. Math. Soc., vol. 128(610) (1997), x+114 pp · Zbl 0881.55001
[17] Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. II, Ann. Math. (2), 148, 1, 1-49 (1998) · Zbl 0924.55010
[18] Hovey, Mark; Strickland, Neil P., Morava \(K\)-Theories and Localisation, Mem. Am. Math. Soc., vol. 139(666) (1999), viii+100 pp · Zbl 0929.55010
[19] Krylov, Piotr A.; Tuganbaev, Askar A., Modules Over Discrete Valuation Domains, de Gruyter Exp. Math., vol. 43 (2008), Walter de Gruyter GmbH & Co. KG: Walter de Gruyter GmbH & Co. KG Berlin · Zbl 1144.13001
[20] Lang, Serge, Algebra, Grad. Texts Math., vol. 211 (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0984.00001
[21] Laumon, Gérard; Moret-Bailly, Laurent, Champs Algébriques, Ergeb. Math. Ihrer Grenzgeb. (3), vol. 39 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0945.14005
[22] Lurie, Jacob, DAG VIII: Quasi-coherent sheaves and Tannaka duality theorems (2011), available at
[23] Lurie, Jacob, DAG XII: Proper morphisms, completions, and the Grothendieck existence theorem (2011), available at
[24] Lurie, Jacob, Higher algebra (2014), available at · Zbl 1175.18001
[25] Matsumura, Hideyuki, Commutative Algebra, Math. Lect. Note Ser., vol. 56 (1980), Benjamin/Cummings Publishing Co., Inc.: Benjamin/Cummings Publishing Co., Inc. Reading, MA · Zbl 0441.13001
[26] Mathew, Akhil, A thick subcategory theorem for modules over certain ring spectra, Geom. Topol., 19, 4, 2359-2392 (2015) · Zbl 1405.55009
[27] Mathew, Akhil, The Galois group of a stable homotopy theory, Adv. Math., 291, 403-541 (2016) · Zbl 1338.55009
[28] Haynes, Miller, Finite localizations, Papers in Honor of José Adem. Papers in Honor of José Adem, Bol. Soc. Mat. Mexicana (2), 37, 1-2, 383-389 (1992), (in Spanish) · Zbl 0852.55015
[29] Mathew, Akhil; Naumann, Niko; Noel, Justin, On a nilpotence conjecture of J.P. May, J. Topol., 8, 4, 917-932 (2015) · Zbl 1335.55009
[30] Mathew, Akhil; Stojanoska, Vesna, The Picard group of topological modular forms via descent theory (2014), available at · Zbl 1373.14008
[31] Oka, Shichirô, Ring spectra with few cells, Jpn. J. Math. (N. S.), 5, 1, 81-100 (1979) · Zbl 0414.55004
[32] Quillen, Daniel, Rational homotopy theory, Ann. Math. (2), 90, 205-295 (1969) · Zbl 0191.53702
[33] Rognes, John, Galois Extensions of Structured Ring Spectra. Stably Dualizable Groups, Mem. Am. Math. Soc., vol. 192(898) (2008), viii+137 pp · Zbl 1166.55001
[34] The Stacks Project Authors (2013), Stacks project
[35] Strickland, N. P., Products on MU-modules, Trans. Am. Math. Soc., 351, 7, 2569-2606 (1999) · Zbl 0924.55005
[36] Szymik, Markus, Commutative \(S\)-algebras of prime characteristics and applications to unoriented bordism (2014), available at · Zbl 1311.55014
[37] Thomason, R. W., The classification of triangulated subcategories, Compos. Math., 105, 1, 1-27 (1997) · Zbl 0873.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.