×

Local lagged adapted generalized method of moments and applications. (English) Zbl 1364.37161

Summary: In this work, an attempt is made for developing the local lagged adapted generalized method of moments (LLGMM). This proposed method is composed of: 1) development of the stochastic model for continuous-time dynamic process; 2) development of the discrete-time interconnected dynamic model for statistic process; 3) utilization of Euler-type discretized scheme for nonlinear and nonstationary system of stochastic differential equations; 4) development of generalized method of moment/observation equations by employing lagged adaptive expectation process; 5) introduction of the conceptual and computational parameter estimation problem; 6) formulation of the conceptual and computational state estimation scheme; and 7) definition of the conditional mean square {\(\epsilon\)}-best sub-optimal procedure. The development of LLGMM is motivated by parameter and state estimation problems in continuous-time nonlinear and nonstationary stochastic dynamic model validation problems in biological, chemical, engineering, financial, medical, physical, and social sciences. The byproducts of LLGMM are the balance between model specification and model prescription of continuous-time dynamic process and the development of discrete-time interconnected dynamic model of local sample mean and variance statistic process (DTIDMLSMVSP). DTIDMLSMVSP is the generalization of statistic (sample mean and variance) drawn from the static dynamic population problems. Moreover, it is also an alternative approach to the GARCH (1,1) model and its many related variant models (e.g., EGARCH model, GJR GARCH model). It provides an iterative scheme for updating statistic coefficients in a system of generalized method of moment/observation equations. Furthermore, application of the LLGMM method to stochastic differential dynamic models for energy commodity price, U.S. Treasury bill yield interest rate U.S.-U.K. foreign exchange rate exhibits its unique role and scope.

MSC:

37M05 Simulation of dynamical systems
37M10 Time series analysis of dynamical systems
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G05 Nonparametric estimation
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI

References:

[1] DOI: 10.1198/073500102288618667 · doi:10.1198/073500102288618667
[2] Apostol T. M., Mathematical Analysis (1974) · Zbl 0309.26002
[3] Bergstrom A. R., Statistical Inference in Continuous Time Economic Models (1976) · Zbl 0348.00027
[4] DOI: 10.1016/0304-4076(86)90063-1 · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[5] DOI: 10.1016/0304-4076(92)90064-X · Zbl 0825.90057 · doi:10.1016/0304-4076(92)90064-X
[6] Box G. E. P., Time Series Analysis Forecasting and Control, 3. ed. (1994) · Zbl 0858.62072
[7] DOI: 10.1214/aos/1176350057 · Zbl 0602.62029 · doi:10.1214/aos/1176350057
[8] Casella G., Statistical Inference, 2. ed. (2002)
[9] DOI: 10.2307/2328983 · doi:10.2307/2328983
[10] Chow G. C., Usefulness of adaptive and rational expectations in economics (2011)
[11] DOI: 10.1016/j.jempfin.2006.09.004 · doi:10.1016/j.jempfin.2006.09.004
[12] DOI: 10.1016/j.addr.2013.03.005 · doi:10.1016/j.addr.2013.03.005
[13] DOI: 10.2307/1912773 · Zbl 0491.62099 · doi:10.2307/1912773
[14] DOI: 10.2307/1912775 · Zbl 0502.62098 · doi:10.2307/1912775
[15] DOI: 10.2307/2171800 · Zbl 0834.60083 · doi:10.2307/2171800
[16] Jeisman J., Estimation of the parameters of stochastic differential equations (2005)
[17] Kenney J. F., Moving Averages, 1. ed. (1962)
[18] DOI: 10.1007/978-3-662-12616-5 · doi:10.1007/978-3-662-12616-5
[19] DOI: 10.2307/1884480 · Zbl 0427.90027 · doi:10.2307/1884480
[20] DOI: 10.1142/8288 · doi:10.1142/8288
[21] DOI: 10.1142/8384 · Zbl 1277.34001 · doi:10.1142/8384
[22] Ladde G. S., International Journal of Computational Intelligence Systems 10 pp 639– (1979)
[23] Ladde G. S., Monotone Iterative Techniques for Nonlinear Differential Equations (1985) · Zbl 0658.35003
[24] Lucas, M. J., and Saccucci, S. M. 1990. Exponentially weighted moving average control schemes: Properties and enhancements.Technometrics32(1):1–12. · doi:10.1080/00401706.1990.10484583
[25] Mohinder S. G., Kalman Filtering, Theory and Practice Using Mathlab (2008)
[26] DOI: 10.1145/1044322.1044325 · doi:10.1145/1044322.1044325
[27] Otunuga O. M., Non-linear stochastic modeling of energy commodity spot price processes (2014)
[28] Ozaki, T. 1985.Nonlinear Time Series Models and Dynamical Systems(Handbook of Statistics). Amsterdam: North-Holland, vol. 5, pp. 25–83.
[29] Ozaki T., Stat. Sin. 2 pp 115– (1992)
[30] DOI: 10.1016/S0313-5926(13)50036-1 · doi:10.1016/S0313-5926(13)50036-1
[31] DOI: 10.1007/s11403-013-0110-4 · doi:10.1007/s11403-013-0110-4
[32] DOI: 10.1093/biomet/46.1-2.67 · Zbl 0091.15004 · doi:10.1093/biomet/46.1-2.67
[33] DOI: 10.2307/1913441 · Zbl 0336.93033 · doi:10.2307/1913441
[34] DOI: 10.1016/S0304-4076(00)00073-7 · Zbl 0996.62026 · doi:10.1016/S0304-4076(00)00073-7
[35] DOI: 10.1111/1467-9892.00064 · Zbl 0882.62080 · doi:10.1111/1467-9892.00064
[36] DOI: 10.1007/s10260-012-0226-z · Zbl 1332.62140 · doi:10.1007/s10260-012-0226-z
[37] DOI: 10.1111/j.1467-9892.1993.tb00162.x · Zbl 0780.62064 · doi:10.1111/j.1467-9892.1993.tb00162.x
[38] Singer H., A Survey of Estimation Methods for Stochastic Differential Equations (2004)
[39] DOI: 10.1016/j.jspi.2008.10.020 · Zbl 1160.62078 · doi:10.1016/j.jspi.2008.10.020
[40] Walter R., Principles of Mathematical Analysis (1976) · Zbl 0346.26002
[41] Wasserman L., All of Nonparametric Statistics (2007) · Zbl 1099.62029
[42] DOI: 10.1214/08-AAP587 · Zbl 1171.62048 · doi:10.1214/08-AAP587
[43] Yuriy K., Canadian Applied Mathematics Quarterly 13 pp 121– (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.