×

New results on averaging theory and applications. (English) Zbl 1364.34065

Summary: The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero-Hopf bifurcation in the Lorenz system and in the Fitzhugh-Nagumo system.

MSC:

34C29 Averaging method for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations

References:

[1] Bogoliubov, N.N.: On some statistical methods in mathematical physics, Izv. Akad. Nauk Ukr. SSR, Kiev (1945) · Zbl 1417.37129
[2] Bogoliubov, N.N., Krylov, N.: The application of methods of nonlinear mechanics in the theory of stationary oscillations, Publ. 8 of the Ukrainian Acad. Sci. Kiev (1934)
[3] Coll B., Gasull A., Prohens R.: Bifurcation of limit cycles from two families of centers. Dyn. Contin. Discrete Impuls. Syst. 12, 275-288 (2005) · Zbl 1074.34038
[4] Euzébio R.D., Llibre J., Vidal C.: Zero-Hopf bifurcation in the FitzHugh-Nagumo system. Math. Methods Appl. Sci. 38, 4289-4299 (2015) · Zbl 1337.37036 · doi:10.1002/mma.3365
[5] Fatou P.: Sur le mouvement d’un systàme soumis à des forces à courte période. Bull. Soc. Math. France 56, 98-139 (1928) · JFM 54.0834.01
[6] Haken H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77-78 (1975) · doi:10.1016/0375-9601(75)90353-9
[7] Gao W., Wang J.: Existence of wavefronts and impulses to FitzHugh-Nagumo equations. Nonlinear Anal. 57, 667-676 (2004) · Zbl 1137.35391 · doi:10.1016/j.na.2004.03.009
[8] Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, revised and corrected reprint of the 1983 original. Applied Mathematical Sciences, 42, Springer, New York (1990) · Zbl 1137.35391
[9] Guckenheimer J.: On a codimension two bifurcation. Lect. Notes Math. 828, 99-142 (1980) · Zbl 0482.58006
[10] Han M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three dimensional system. J. Syst. Sci. Math. Sci. 18, 403-709 (1998) · Zbl 0934.34030
[11] Hastings S.P.: Some mathematical problems from neurobiology. Am. Math. Mon. 82(9), 881-895 (1975) · Zbl 0347.92001 · doi:10.2307/2318490
[12] Kuznetsov Y.A.: Elements of Applied Bifurcations Theory. 3rd edn. Springer, New York (2004) · Zbl 1082.37002 · doi:10.1007/978-1-4757-3978-7
[13] Llibre, J., Novaes, D.D.: Improving the averaging theory for computing periodic solutions of the differential equations. Zeitschrift für angewandte Mathematik und Physik (2015) 1401-1412 · Zbl 1359.37109
[14] Lorenz E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[15] Knobloch E.: Chaos in the segmented disc dynamo. Phys. Lett. A 82, 439-440 (1981) · doi:10.1016/0375-9601(81)90274-7
[16] Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Appl. Math. Sci., 41, Springer, New York (1982) · Zbl 0504.58001
[17] Verhulst F.: Nonlinear Differential Equations and Dynamical Systems. Universitext, Springer, New York (1991) · Zbl 0685.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.