×

Witt kernels and Brauer kernels for quartic extensions in characteristic two. (English) Zbl 1364.11092

Given a field extension \(E/F\), the group \(W_q(E/F)\) is defined to be the kernel of the natural restriction map \(W_q(F) \rightarrow W_q(E)\). Similarly, \(_2Br(E/F)\) is the kernel of the restriction map \(_2Br(F) \rightarrow {_2Br(E)} \).
The goal of this paper is to study \(W_q(E/F)\) and \(_2Br(E/F)\) given that \(E/F\) is a simple quartic extension and \(\text{char}(F)=2\). Let \(E=F[\lambda : \lambda^4+a \lambda^3+b \lambda^2+c \lambda+d=0]\), and \(f_C(X)=X^3+b X^2+a c X+a^2 d+c^2\) be the underlying cubic resolvent. One of the following cases holds:
The field extension is separable, in which case we may assume \(b=0\) and \(a \neq 0\).
The field extension is inseparable but not purely inseparable, in which case \(a=c=0\) and \(b \neq 0\).
The field extension is purely inseparable, in which case \(a=b=c=0\).
The main result of this paper (Theorem 5.4) states that \(W_q(E/F)\) is generated as a \(W(F)\)-module by the following quadratic forms:
\(\bullet\)
\([1,g]\) for all \(g \in F\) with \(F[\wp^{-1}(g)] \subseteq E\).
\(\bullet\)
\(\langle \langle g,h]]\) for all \(h \in F\) and \(g \in F^\times\) with \(F[\sqrt{g}] \subseteq E\).
\(\bullet\)
\(\langle \langle f_C(e),\frac{d}{e^2} ]]\) for all \(e \in F^\times\) with \(f_C(e) \neq 0\).
\(\bullet\)
In Case (2), also \(\langle \langle b,d,h]]\) for all \(h \in F\).
As a result, the authors prove (Theorem 6.2) that under the same conditions, \(_2Br(E/F)\) is generated by the following quaternion algebras:
\((h,g]\) for all \(h \in F^\times\) and \(g \in F\) with \(F[\wp^{-1}(g)] \subseteq E\).
\((g,h]\) for all \(h \in F\) and \(g \in F^\times\) with \(F[\sqrt{g}] \subseteq E\).
\((f_C(e),\frac{d}{e^2}]\) for all \(e \in F^\times\) with \(f_C(e) \neq 0\).

MSC:

11E81 Algebraic theory of quadratic forms; Witt groups and rings
11E04 Quadratic forms over general fields
11E39 Bilinear and Hermitian forms
12F05 Algebraic field extensions
16K20 Finite-dimensional division rings

References:

[1] Ahmad, H., On quadratic forms over inseparable quadratic extensions, Arch. Math., 63, 23-29 (1994) · Zbl 0812.11027
[2] Ahmad, H., Witt kernels of bi-quadratic extensions in characteristic 2, Bull. Aust. Math. Soc., 69, 433-440 (2004) · Zbl 1053.11032
[3] Ahmad, H., The Witt kernels of purely inseparable quartic extensions, Linear Algebra Appl., 395, 265-273 (2005) · Zbl 1116.11025
[4] Albert, A. A., Structure of Algebras, Colloq. Publ. - Am. Math. Soc., vol. 24 (1939), Amer. Math. Soc.: Amer. Math. Soc. New York · JFM 65.0094.02
[5] Aravire, R.; Laghribi, A., Results on Witt kernels of quadratic forms for multi-quadratic extensions, Proc. Am. Math. Soc., 141, 12, 4191-4197 (2013) · Zbl 1283.11065
[6] Baeza, R., Ein Teilformensatz für quadratische Formen in Charakteristik 2, Math. Z., 135, 175-184 (1974) · Zbl 0263.15015
[7] Baeza, R., Quadratic Forms over Semilocal Rings, Lect. Notes Math., vol. 655 (1978), Springer: Springer Berlin · Zbl 0382.10014
[8] Dolphin, A.; Hoffmann, D. W., Differential forms and bilinear forms under field extensions, (Linear Algebraic Groups and Related Structures (2011)), Preprint No. 426
[9] Elman, R.; Karpenko, N.; Merkurjev, A., The Algebraic Theory of Quadratic Forms, Colloq. Publ. - Am. Math. Soc., vol. 56 (2008), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1165.11042
[10] Elman, R.; Lam, T. Y.; Tignol, J.-P.; Wadsworth, A., Witt rings and Brauer groups under multiquadratic extensions I, Am. J. Math., 105, 1119-1170 (1983) · Zbl 0492.10014
[11] Elman, R.; Lam, T. Y.; Wadsworth, A., Amenable fields and Pfister extensions, (Conference on Quadratic Forms. Conference on Quadratic Forms, Queen’s Univ., Kingston, Ont., 1976. Conference on Quadratic Forms. Conference on Quadratic Forms, Queen’s Univ., Kingston, Ont., 1976, Queen’s Papers in Pure and Appl. Math., vol. 46 (1977)), 445-492 · Zbl 0385.12010
[12] Elman, R.; Lam, T. Y.; Wadsworth, A., Function fields of Pfister forms, Invent. Math., 51, 61-75 (1979) · Zbl 0395.10028
[13] Hoffmann, D. W., Witt kernels of bilinear forms for algebraic extensions in characteristic 2, Proc. Am. Math. Soc., 134, 645-652 (2006) · Zbl 1135.11015
[14] Hoffmann, D. W., Witt kernels of quadratic forms for multiquadratic extensions in characteristic 2, Proc. Am. Math. Soc. (2015), in press, preliminary preprint version: · Zbl 1414.11050
[15] Hoffmann, D. W.; Laghribi, A., Quadratic forms and Pfister neighbors in characteristic 2, Trans. Am. Math. Soc., 356, 10, 4019-4053 (2004) · Zbl 1116.11020
[16] Hoffmann, D. W.; Laghribi, A., Isotropy of quadratic forms over the function field of a quadric in characteristic 2, J. Algebra, 295, 2, 362-386 (2006) · Zbl 1138.11012
[17] Jacobson, N., Some applications of Jordan norms to involutorial simple associative algebras, Adv. Math., 48, 2, 149-165 (1983) · Zbl 0522.16030
[18] Knebusch, M., Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 93-157 (1969/1970) · Zbl 0256.15016
[19] Lam, T. Y.; Leep, D.; Tignol, J.-P., Biquaternion algebras and quartic extensions, IHES Publ. Math., 77, 63-102 (1993) · Zbl 0801.11048
[20] Mammone, P.; Moresi, R., Formes quadratiques, algèbres à division et extensions multiquadratiques inséparables, Bull. Belg. Math. Soc. Simon Stevin, 2, 311-319 (1995) · Zbl 0841.11020
[21] Mammone, P.; Shapiro, D., The Albert quadratic form for an algebra of degree four, Proc. Am. Math. Soc., 105, 3, 525-530 (1989) · Zbl 0669.10042
[22] Sivatski, A. S., The Witt ring kernel for a fourth degree field extension and r elated problems, J. Pure Appl. Algebra, 214, 61-70 (2010) · Zbl 1226.11050
[23] Springer, T. A., Sur les formes quadratiques d’indice zéro, C. R. Acad. Sci. Paris, 234, 1517-1519 (1952) · Zbl 0046.24303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.