×

Continuous point symmetries in group field theories. (English) Zbl 1362.81066

Summary: We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them.

MSC:

81T10 Model quantum field theories
70S20 More general nonquantum field theories in mechanics of particles and systems
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
70S10 Symmetries and conservation laws in mechanics of particles and systems
83C45 Quantization of the gravitational field
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

References:

[1] Oriti D 2006 The group field theory approach to quantum gravity (arXiv:gr-qc/0607032) · Zbl 1223.83025
[2] Oriti D 2009 The group field theory approach to quantum gravity: some recent results AIP Conf. Proc.1196 209-18 · doi:10.1063/1.3284386
[3] Oriti D 2011 The microscopic dynamics of quantum space as a group field theory Proc., Foundations of Space and Time: Reflections on Quantum Gravity(Cape Town, South Africa,) pp 257-320 · Zbl 1269.83008
[4] Oriti D 2016 Group field theory as the 2nd quantization of loop quantum gravity Class. Quantum Grav.33 085005 · Zbl 1338.83082 · doi:10.1088/0264-9381/33/8/085005
[5] Krajewski T 2011 Group field theories PoSQGQGS2011 005
[6] Oriti D 2014 Group field theory and loop quantum gravity (arXiv:1408.7112) · Zbl 1195.83045
[7] Gross M 1992 Tensor models and simplicial quantum gravity in >2D Nucl. Phys. Proc. Suppl.25A 144-9 · Zbl 0957.83511 · doi:10.1016/S0920-5632(05)80015-5
[8] Gurau R and Ryan J P 2012 Colored tensor models—a review SIGMA8 020 · Zbl 1242.05094
[9] Rivasseau V 2011 Quantum gravity and renormalization: the tensor track AIP Conf. Proc.1444 18-29
[10] Carrozza S 2013 Tensorial methods and renormalization in group field theories PhD Thesis Orsay, LPT
[11] Kegeles A and Oriti D 2016 Generalized conservation laws in non-local field theories J. Phys. A: Math. Theor.49 135401 · Zbl 1368.70039 · doi:10.1088/1751-8113/49/13/135401
[12] Zawistowski Z J 2001 Symmetries of integro-differential equations eConf C 0107094 263-70 · Zbl 1038.58050
[13] Ibragimov N H, Kovalev V and Pustovalov V 2002 Symmetries of integro-differential equations: a survey of methods illustrated by the benny equations Nonlinear Dyn.28 135-53 · Zbl 1023.45008 · doi:10.1023/A:1015061100660
[14] Meleshko S V, Grigoriev Y N, Ibragimov N K and Kovalev V F 2010 Symmetries of Integro-Differential Equations: with Applications in Mechanics and Plasma Physics (New York: Springer) · Zbl 1203.45006
[15] Ben Geloun J 2012 Classical group field theory J. Math. Phys.53 022901 · Zbl 1274.83048 · doi:10.1063/1.3682651
[16] Baratin A and Oriti D 2010 Group field theory with non-commutative metric variables Phys. Rev. Lett.105 221302 · doi:10.1103/PhysRevLett.105.221302
[17] Baratin A and Oriti D 2012 Group field theory and simplicial gravity path integrals: a model for Holst-Plebanski gravity Phys. Rev. D 85 044003 · doi:10.1103/PhysRevD.85.044003
[18] Baratin A and Oriti D 2011 Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model New J. Phys.13 125011 · Zbl 1448.83034 · doi:10.1088/1367-2630/13/12/125011
[19] Baez J C 1998 Spin foam models Class. Quantum Grav.15 1827-58 · Zbl 0932.83014 · doi:10.1088/0264-9381/15/7/004
[20] Alexandrov S and Roche P 2011 Critical overview of loops and foams Phys. Rep.506 41-86 · doi:10.1016/j.physrep.2011.05.002
[21] Ben Geloun J, Gurau R and Rivasseau V 2010 EPRL/FK group field theory Europhys. Lett.92 60008 · doi:10.1209/0295-5075/92/60008
[22] Alexandrov S, Geiller M and Noui K 2012 Spin foams and canonical quantization SIGMA8 055 · Zbl 1270.83018
[23] Perez A 2013 The spin foam approach to quantum gravity Living Rev. Relativ.16 3 · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[24] Rovelli C 2008 Loop quantum gravity Living Rev. Relativ.11 · Zbl 1316.83029 · doi:10.12942/lrr-2008-5
[25] Chiou D-W 2014 Loop quantum gravity Int. J. Mod. Phys. D 24 1530005 · Zbl 1312.83001 · doi:10.1142/S0218271815300050
[26] Gielen S, Oriti D and Sindoni L 2014 Homogeneous cosmologies as group field theory condensates J. High Energy Phys.JHEP06(2014) 013 · Zbl 1333.81187 · doi:10.1007/JHEP06(2014)013
[27] Gielen S and Oriti D 2014 Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics New J. Phys.16 123004 · Zbl 1451.85010 · doi:10.1088/1367-2630/16/12/123004
[28] Gielen S 2014 Quantum cosmology of (loop) quantum gravity condensates: an example Class. Quantum Grav.31 155009 · Zbl 1296.83019 · doi:10.1088/0264-9381/31/15/155009
[29] Oriti D, Sindoni L and Wilson-Ewing E 2016 Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates Class. Quantum Grav.33 24001 · Zbl 1351.83073 · doi:10.1088/0264-9381/33/22/224001
[30] Ben Geloun J and Bonzom V 2011 Radiative corrections in the Boulatov-Ooguri tensor model: the 2-point function Int. J. Theor. Phys.50 2819-41 · Zbl 1236.81164 · doi:10.1007/s10773-011-0782-2
[31] Ben Geloun J 2013 On the finite amplitudes for open graphs in Abelian dynamical colored Boulatov-Ooguri models J. Phys. A: Math. Theor.46 402002 · Zbl 1277.83040 · doi:10.1088/1751-8113/46/40/402002
[32] Gurau R 2011 Colored group field theory Commun. Math. Phys.304 69-93 · Zbl 1214.81170 · doi:10.1007/s00220-011-1226-9
[33] Gurau R 2010 Lost in translation: topological singularities in group field theory Class. Quantum Grav.27 235023 · Zbl 1205.83022 · doi:10.1088/0264-9381/27/23/235023
[34] Boulatov D V 1992 A model of three-dimensional lattice gravity Mod. Phys. Lett. A 7 1629-46 · Zbl 1020.83539 · doi:10.1142/S0217732392001324
[35] Bonzom V, Gurau R and Rivasseau V 2012 Random tensor models in the large N limit: uncoloring the colored tensor models Phys. Rev. D 85 084037 · doi:10.1103/PhysRevD.85.084037
[36] Benedetti D, Ben Geloun J and Oriti D 2015 Functional renormalisation group approach for tensorial group field theory: a rank-3 model J. High Energy Phys.JHEP03(2015) 084 · Zbl 1388.83088 · doi:10.1007/JHEP03(2015)084
[37] Freidel L, Krasnov K and Puzio R 1999 BF description of higher dimensional gravity theories Adv. Theor. Math. Phys.3 1289-324 · Zbl 0997.83020 · doi:10.4310/ATMP.1999.v3.n5.a3
[38] Barrett J W and Crane L 1998 Relativistic spin networks and quantum gravity J. Math. Phys.39 3296-302 · Zbl 0967.83006 · doi:10.1063/1.532254
[39] Olver P J 2000 Applications of Lie Groups to Differential Equations (New York: Springer) · Zbl 0937.58026
[40] Lie S 1880 Theorie der transformationsgruppen i Math. Ann.16 441-528 · JFM 12.0292.01 · doi:10.1007/BF01446218
[41] Noether E 1971 Invariant variation problems Transp. Theory Stat. Phys.1 186-207 · Zbl 0292.49008 · doi:10.1080/00411457108231446
[42] Fushchich W and Kornyak V V 1989 Computer algebra application for determining lie and lie-bäcklund symmetries of differential equations J. Symb. Comput.7 611-9 · Zbl 0691.35004 · doi:10.1016/S0747-7171(89)80043-4
[43] Akhtarshenas S J 2010 Differential geometry on SU(N): left and right invariant vector fields and one-forms (arXiv:1003.2708)
[44] Gielen S, Oriti D and Sindoni L 2013 Cosmology from group field theory Formalism for quantum gravity Phys. Rev. Lett.111 031301 · doi:10.1103/PhysRevLett.111.031301
[45] Gielen S 2015 Perturbing a quantum gravity condensate Phys. Rev. D 91 043526 · doi:10.1103/PhysRevD.91.043526
[46] Gielen S 2015 Identifying cosmological perturbations in group field theory condensates J. High Energy Phys.JHEP08(2015) 010 · Zbl 1388.83916 · doi:10.1007/JHEP08(2015)010
[47] Oriti D, Sindoni L and Wilson-Ewing E 2017 Class. Quant. Grav.34 04LT01 · Zbl 1358.83103 · doi:10.1088/1361-6382/aa549a
[48] de Cesare M, Pithis A G A and Sakellariadou M 2016 Phys. Rev.94 064051 · doi:10.1103/PhysRevD.94.064051
[49] Dittrich B 2007 Partial and complete observables for Hamiltonian constrained systems Gen. Relativ. Gravit.39 1891-927 · Zbl 1145.83015 · doi:10.1007/s10714-007-0495-2
[50] Dittrich B 2006 Partial and complete observables for canonical general relativity Class. Quantum Grav.23 6155-84 · Zbl 1111.83015 · doi:10.1088/0264-9381/23/22/006
[51] Baratin A, Dittrich B, Oriti D and Tambornino J 2011 Non-commutative flux representation for loop quantum gravity Class. Quantum Grav.28 175011 · Zbl 1223.83051 · doi:10.1088/0264-9381/28/17/175011
[52] Gielen S and Sindoni L 2016 SIGMA12 082 · Zbl 1347.83015 · doi:10.3842/SIGMA.2016.082
[53] Ben Geloun J, Martini R and Oriti D 2015 Functional renormalization group analysis of a tensorial group field theory on R3 Europhys. Lett.112 31001 · doi:10.1209/0295-5075/112/31001
[54] Ben Geloun J, Martini R and Oriti D 2016 Functional renormalisation group analysis of tensorial group field theories on Rd Phys. Rev. D 94 024017 · doi:10.1103/PhysRevD.94.024017
[55] Ben Geloun J and Rivasseau V 2013 A renormalizable 4-dimensional tensor field theory Commun. Math. Phys.318 69-109 · Zbl 1261.83016 · doi:10.1007/s00220-012-1549-1
[56] Carrozza S, Oriti D and Rivasseau V 2014 Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions Commun. Math. Phys.327 603-41 · Zbl 1291.83102 · doi:10.1007/s00220-014-1954-8
[57] Ben Geloun J 2016 Renormalizable tensor field theories 18th Int. Congress on Mathematical Physics(Santiago de Chile, Chile, 27 July-1 August 2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.