×

Regular maps with nilpotent automorphism group. (English) Zbl 1362.57004

An orientably regular map is a 2-cell decomposition of a closed orientable surface with the largest possible number of orientation-preserving symmetries; equivalently, its orientation-preserving automorphism group acts transitively on the set of oriented edges (or arcs, or darts). The finite group \(G\) of orientation-preserving automorphisms of such a regular map is a finite quotient of the free product \(\mathbb{Z}\ast\mathbb{Z}_ 2\) or, equivalently, of a triangle group of type \((2,p,q)\) (corresponding to a regular map with \(p\)-gonal faces, with \(q\) faces meeting at each vertex). The main subject addressed in the present paper is the classification of the regular maps with nilpotent automorphism group \(G\) (“nilpotent regular maps”); by known results, the main point here is the problem of classifying nilpotent maps with simple underlying graph (without multiple edges). “Our main objective in this paper is to show that for any positive integer \(c\), there are only finitely many regular maps with simple underlying graph, such that the orientation-preserving automorphism group of the map is nilpotent of class \(c\). In fact, we prove that the number of vertices of any such graph is bounded by a function of \(c\). Also, we give an exact formula for the maximum number of vertices of a simple nilpotent map of class \(c\), and show that this maximum is achieved by exactly one nilpotent simple map of which every other simple nilpotent map of the given class \(c\) is a quotient.” Finally, a list of all nilpotent maps of classes 2 to 4 is given together with the order and a presentation of \(G\) and the type \((p,q)\) of a map (obtained by computer).

MSC:

57M15 Relations of low-dimensional topology with graph theory
57M60 Group actions on manifolds and cell complexes in low dimensions

Citations:

Zbl 0393.20024

Software:

OEIS; Magma
Full Text: DOI

References:

[1] Brahana, H.R.: Regular maps and their groups. Amer. J. Math. 49, 268-284 (1927) · JFM 53.0549.01 · doi:10.2307/2370756
[2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[3] Catalano, D.A., Conder, M.D.E., Du, S.F., Kwon, Y.S., Nedela, R., Wilson, S.: Classification of regular embeddings of \[n\] n-dimensional cubes. J. Algebraic Combin. 33, 215-238 (2011) · Zbl 1222.05032 · doi:10.1007/s10801-010-0242-8
[4] Conder, M.D.E.: Regular maps and hypermaps of Euler characteristic \[-1-1\] to \[-200-200\]. J. Combin. Theory Ser. B 99, 455-459 (2009). Data source: www.math.auckland.ac.nz/ conder/hypermaps.html · Zbl 1205.05106
[5] Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 4th edn. Springer, Berlin (1972) · Zbl 0239.20040 · doi:10.1007/978-3-662-21946-1
[6] Du, S.F., Jones, G.A., Kwak, J.H., Nedela, R., Škoviera, M.: Regular embeddings of \[K_{n, n}\] Kn,n where \[n\] n is a power of 2. I: metacyclic case. Europ. J. Combin. 28, 1595-1609 (2007) · Zbl 1123.05029 · doi:10.1016/j.ejc.2006.08.012
[7] Du, S.F., Jones, G.A., Kwak, J.H., Nedela, R., Škoviera, M.: Regular embeddings of \[K_{n, n}\] Kn,n where \[n\] n is a power of 2. II: the non-metacyclic case. Europ. J. Combin. 31, 1946-1956 (2010) · Zbl 1221.05079 · doi:10.1016/j.ejc.2010.01.009
[8] Du, S.F., Jones, G.A., Kwak, J.H., Nedela, R., Škoviera, M.: Two-groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs. Ars Math. Contemp. 6, 155-170 (2013) · Zbl 1309.20010
[9] Hu, K., Nedela, R. Škoviera, M., Wang, N.: Regular embeddings of cycles with multiple edges revisited. Ars Math. Contemp. 8, 177-194 (2015) · Zbl 1318.05018
[10] Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967) · Zbl 0217.07201 · doi:10.1007/978-3-642-64981-3
[11] Jones, G.A.: Ree groups and Riemann surfaces. J. Algebra 165, 41-62 (1994) · Zbl 0796.30036 · doi:10.1006/jabr.1994.1097
[12] Jones, G.A., Silver, S.A.: Suzuki groups and surfaces. J. London Math. Soc. 48(2), 117-125 (1993) · Zbl 0794.30031 · doi:10.1112/jlms/s2-48.1.117
[13] Jones, G.A., Singerman, D.: Theory of maps on orientable surfaces. Proc. London Math. Soc. 37, 273-307 (1978) · Zbl 0391.05024 · doi:10.1112/plms/s3-37.2.273
[14] Jones, G., Streit, M., Wolfart, J.: Galois action on families of generalised Fermat curves. J. Algebra 307, 829-840 (2007) · Zbl 1112.14034 · doi:10.1016/j.jalgebra.2006.10.009
[15] Labute, J.P.: The lower central series of the group \[\langle \, x,y : x^p = 1 \,\rangle \]⟨x,y:xp=1⟩. Proc. Amer. Math. Soc. 66, 197-201 (1977) · Zbl 0393.20024
[16] Malnič, A., Nedela, R., Škoviera, M.: Regular maps with nilpotent automorphism groups. European J. Combin. 33, 1974-1986 (2012) · Zbl 1252.51013 · doi:10.1016/j.ejc.2012.06.001
[17] Nedela, R., Škoviera, M.: Exponents of orientable maps. Proc. London Math. Soc. 75, 1-31 (1997) · Zbl 0877.05012 · doi:10.1112/S0024611597000245
[18] Nedela, R., Škoviera, M., Zlatoš, A.: Bipartite maps, Petrie duality and exponent groups (dedicated to the memory of Professor M. Pezzana). Atti Sem. Mat. Fis. Univ. Modena. 49, 109-133 (2001) · Zbl 1008.05037
[19] Sah, C.H.: Groups related to compact Riemann surfaces. Acta Math. 123, 13-42 (1969) · Zbl 0208.10002 · doi:10.1007/BF02392383
[20] Sloane, N.J.A.: On-line encyclopedia of integer sequences (OEIS). www.oeis.org · Zbl 1274.11001
[21] Wilson, S.E.: Operators over regular maps. Pacific J. Math. 81, 559-568 (1979) · Zbl 0433.05021 · doi:10.2140/pjm.1979.81.559
[22] Wilson, S.E.: Bicontactual regular maps. Pacific J. Math. 120, 437-451 (1985) · Zbl 0583.05024 · doi:10.2140/pjm.1985.120.437
[23] Wilson, S.E.: Cantankerous maps and rotary embeddings of \[K_n\] Kn. J. Combin. Theory Ser. B 47, 262-279 (1989) · Zbl 0687.05018 · doi:10.1016/0095-8956(89)90028-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.