×

Accurate solution of the Thomas-Fermi equation using the fractional order of rational Chebyshev functions. (English) Zbl 1362.34039

Summary: In this paper, the nonlinear singular Thomas-Fermi differential equation for neutral atoms is solved using the fractional order of rational Chebyshev orthogonal functions (FRCs) of the first kind, \(F T_n^\alpha(t, L)\), on a semi-infinite domain, where \(L\) is an arbitrary numerical parameter. First, using the quasilinearization method, the equation be converted into a sequence of linear ordinary differential equations (LDEs), and then these LDEs are solved using the FRCs collocation method. Using 300 collocation points, we have obtained a very good approximation solution and the value of the initial slope \(y^\prime(0) = - 1.5880710226113753127186845094239501095\), highly accurate to 37 decimal places.

MSC:

34B16 Singular nonlinear boundary value problems for ordinary differential equations
34B40 Boundary value problems on infinite intervals for ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
Full Text: DOI

References:

[1] Noye, B. J.; Dehghan, M., New explicit finite difference schemes for two-dimensional diffusion subject to specification of mass, Numer. Methods Partial Differential Equations, 15, 521-534 (1999) · Zbl 0939.65103
[2] Bu, W.; Ting, Y.; Wu, Y.; Yang, J., Finite difference/finite element method for two-dimensional space and time fractional blochtorrey equations, J. Comput. Phys., 293, 264-279 (2015) · Zbl 1349.65440
[3] Choi, H. J.; Kweon, J. R., A finite element method for singular solutions of the Navier Stokes equations on a non-convex polygon, J. Comput. Appl. Math., 292, 342-362 (2016) · Zbl 1325.76115
[4] Parand, K.; Abbasbandy, S.; Kazem, S.; Rezaei, A. R., An improved numerical method for a class of astrophysics problems based on radial basis functions, Phys. Scr., 83, 1, Article 015011 pp. (2011), 11pages · Zbl 1218.85008
[5] Parand, K.; Hemami, M., Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function, Int. J. Appl. Comput. Math. (2016), in press, http://dx.doi.org/10.1007/s40819-016-0161-z · Zbl 1397.85003
[6] Parand, K.; Hossayni, S. A.; Rad, J. A., Operation matrix method based on Bernstein polynomials for Riccati differential equation and Volterra population model, Appl. Math. Model., 40, 2, 993-1011 (2016) · Zbl 1446.65210
[7] Hossayni, S. A.; Rad, J. A.; Parand, K.; Abbasbandy, S., Application of the exact operational matrices for solving the Emden-Fowler equations arising in Astrophysics, Int. J. Ind. Math., 7, 4, 351-374 (2015)
[8] Kazem, S.; Rad, J. A.; Parand, K.; Shaban, M.; Saberi, H., The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method, Int. J. Comput. Math., 89, 16, 2240-2258 (2012) · Zbl 1255.65184
[9] Franke, R., Scattered data interpolation: Tests of some methods, Math. Comp., 38, 181-200 (1982) · Zbl 0476.65005
[10] Kansa, E. J., Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates, Comput. Math. Appl., 19, 127-145 (1990) · Zbl 0692.76003
[11] Kansa, E. J., Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19, 147-161 (1990) · Zbl 0850.76048
[12] Kazem, S.; Rad, J. A.; Parand, K.; Abbasbandy, S., A new method for solving steady flow of a third-grade fluid in a porous half space based on radial basis functions, Z. Naturf. A, 66, 591-598 (2011)
[13] Rad, J. A.; Kazem, S.; Parand, K., Optimal control of a parabolic distributed parameter system via radial basis functions, Commun. Nonlinear Sci. Numer. Simul., 19, 8, 2559-2567 (2014) · Zbl 1510.49029
[14] Parand, K.; Dehghan, M.; Taghavi, A., Modified generalized Laguerre function Tau method for solving laminar viscous flow: The Blasius equation, Internat. J. Numer. Methods Heat, 20, 7, 728-743 (2010)
[15] Parand, K.; Delafkar, Z.; Pakniat, N.; Pirkhedri, A.; Kazemnasab Haji, M., Collocation method using Sinc and Rational Legendre functions for solving Volterra’s population model, Commun. Nonlinear Sci. Numer. Simul., 16, 1811-1819 (2011) · Zbl 1221.65186
[16] Parand, K.; Nikarya, M.; Rad, J. A., Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method, Celestial Mech. Dynam. Astronom., 116, 97-107 (2013)
[17] Funaro, D., Computational aspects of pseudospectral Laguerre approximations, Appl. Numer. Math., 6, 6, 447-457 (1990) · Zbl 0708.65072
[18] Funaro, D.; Kavian, O., Approximation of some diffusion evolution equations in unbounded domains by Hermite functions, Math. Comp., 57, 597-619 (1991) · Zbl 0764.35007
[19] Guo, B. Y.; Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86, 4, 635-654 (2000) · Zbl 0969.65094
[20] Guo, B. Y., Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations, J. Math. Anal. Appl., 243, 373-408 (2000) · Zbl 0951.41006
[21] Rad, J. A.; Parand, K.; Abbasbandy, S., Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options, Commun. Nonlinear Sci. Numer. Simul., 22, 1, 1178-1200 (2015) · Zbl 1329.91142
[22] Rad, J. A.; Parand, K.; Ballestra, L. V., Pricing European and American options by radial basis point interpolation, Appl. Math. Comput., 251, 363-377 (2015) · Zbl 1328.91286
[23] Rad, J. A.; Parand, K.; Abbasbandy, S., Pricing European and American options using a very fast and accurate scheme: The meshless local Petrov-Galerkin method, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 85, 3, 337-351 (2015) · Zbl 1325.91061
[24] Christov, C., A complete orthonormal system of functions in \(L^2(- \infty, \infty)\) space, SIAM J. Appl. Math., 42, 6, 1337-1344 (1982) · Zbl 0562.33009
[25] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69, 112-142 (1987) · Zbl 0615.65090
[26] Boyd, J. P., Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys., 70, 63-88 (1987) · Zbl 0614.42013
[27] Guo, B. Y.; Shen, J.; Wang, Z. Q., A rational approximation and its applications to differential equations on the half line, J. Sci. Comput., 15, 117-147 (2000) · Zbl 0984.65104
[28] Baharifard, F.; Kazem, S.; Parand, K., Rational and exponential legendre tau method on steady flow of a third grade fluid in a porous half space, Int. J. Appl. Comput. Math., 2, 4, 679-698 (2016) · Zbl 1421.76218
[29] Parand, K.; Shahini, M.; Dehghan, M., Solution of a laminar boundary layer flow via a numerical method, Commun. Nonlinear Sci. Numer. Simul., 15, 360-367 (2010) · Zbl 1221.76157
[30] Parand, K.; Dehghan, M.; Baharifard, F., Solving a laminar boundary layer equation with the rational Gegenbauer functions, Appl. Math. Model., 37, 851-863 (2013) · Zbl 1351.76025
[31] Parand, K.; Delkhosh, M., Solving Volterra’s population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions, Ricerche Mat., 65, 1, 307-328 (2016) · Zbl 1355.65180
[32] Delkhosh, M.; Delkhosh, M.; Jamali, M., Introduction to Green’s function and its numerical solution, Middle-East J. Sci. Res., 11, 7, 974-981 (2012)
[33] Tatari, M.; Dehghan, M.; Razzaghi, M., Application of the Adomian decomposition method for the Fokker-Planck equation, Math. Comput. Modelling, 45, 639-650 (2007) · Zbl 1165.65397
[34] He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Math., 178, 257-262 (1999) · Zbl 0956.70017
[35] Shakeri, F.; Dehghan, M., Numerical solution of the Klein-Gordon equation via He’s variational iteration method, Nonlinear Dynam., 51, 89-97 (2008) · Zbl 1179.81064
[36] Delkhosh, M.; Delkhosh, M., Analytic solutions of some self-adjoint equations by using variable change method and its applications, J. Appl. Math., 7 (2012), Article ID 180806 · Zbl 1247.34001
[37] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[38] Parand, K.; Rad, J. A., Exp-function method for some nonlinear PDE’s and a nonlinear ODE’s, J. King Saud Univ. Sci., 24, 1-10 (2012)
[39] He, J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul., 35, 37-43 (2000) · Zbl 1068.74618
[40] He, J. H., Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[41] Abbasbandy, S.; Modarrespoor, D.; Parand, K.; Rad, J. A., Analytical solution of the transpiration on the boundary layer flow and heat transfer over a vertical slender cylinder, Quaest. Math., 36, 3, 353-380 (2013) · Zbl 1274.76273
[42] Delkhosh, M., Solving a class of N-order linear differential equations by the recursive relations and it’s algorithms in matlab, J. Novel Appl. Sci., 2, 8, 188-196 (2013)
[43] Thomas, L. H., The calculation of atomic fields, Math. Proc. Cambridge, 23, 542-548 (1927) · JFM 53.0868.04
[44] Davis, H. T., Introduction to Nonlinear Differential and Integral Equations (1962), Dover: Dover New York · Zbl 0106.28904
[45] Slater, J. C.; Krutter, H. M., The Thomas-Fermi method for metals, Phys. Rev., 47, 559-568 (1935) · Zbl 0011.28408
[46] Feynman, R. P.; Metropolis, N.; Teller, E., Equations of state of elements based on the generalized Fermi-Thomas theory, Phys. Rev., 75, 10, 1561-1573 (1949) · Zbl 0036.43007
[47] Fermi, E., Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente, Z. Phys., 48, 73-79 (1928) · JFM 54.0984.02
[48] Laurenzi, B. J., An analytic solution to the Thomas-Fermi equation, J. Math. Phys., 10, 2535-2537 (1990) · Zbl 0743.34021
[49] Baker, E. B., The application of the Fermi-Thomas statistical model to the calculation of potential distribution in positive ions, Quart. Appl. Math., 36, 630-647 (1930) · JFM 56.1327.06
[50] Bush, V.; Caldwell, S. H., Thomas-Fermi equation solution by the differential analyzer, Phys. Rev., 38, 1898-1902 (1931) · Zbl 0003.26805
[51] Sommerfeld, A., Asymptotische integration der differentialgleichung des thomas fermischen atoms, Z. Phys., 78, 283-308 (1932) · JFM 58.1353.03
[52] Miranda, C., Teorie e metodi per l’integrazione numerica dell’equazione differenziale di Fermi, Memorie della Reale Accademia d’Italia, Classe di scienze fisiche, Math. Nat., 5, 285-322 (1934) · Zbl 0008.35301
[53] Coulson, C. A.; March, N. H., Momenta in atoms using the Thomas-Fermi method, Proc. Phys. Soc. Sect. A, 63, 4, 67-374 (1949) · Zbl 0035.42302
[54] Kobayashi, S.; Matsukuma, T.; Nagi, S.; Umeda, K., Accurate value of the initial slope of the ordinary T-F function, J. Phys. Soc. Japan, 10, 759-762 (1955)
[55] Mason, J. C., Rational approximations to the ordinary Thomas-Fermi function and its derivative, Proc. Phys. Soc., 84, 357-359 (1964)
[56] Hille, E., Some aspects of the Thomas-Fermi equation, J. Anal. Math., 23, 1, 147-170 (1970) · Zbl 0208.11501
[57] More, R. M., Radiation pressure and the Thomas-Fermi equation of state, J. Phys. A: Math. Gen., 9, 11, 1979-1985 (1976)
[58] Graef, J. R., Oscillatory and asymptotic properties of solutions of generalized Thomas-Fermi equations with deviating arguments, J. Math. Anal. Appl., 84, 519-529 (1981) · Zbl 0491.34057
[59] Laurenzi, B. J., An analytic solution to the Thomas-Fermi equation, J. Math. Phys., 31, 2535-2537 (1990) · Zbl 0743.34021
[60] MacLeod, A. J., Chebyshev series solution of the Thomas-Fermi equation, Comput. Phys. Comm., 67, 389-391 (1992) · Zbl 0875.65075
[61] Al-zanaidi, M.; Grossmann, C., Monotonous enclosures for the Thomas-Fermi equation in the isolated neutral atom case, IMA J. Numer. Anal., 16, 413-434 (1996) · Zbl 0854.65069
[62] Adomian, G., Solution of the Thomas-Fermi equation, Appl. Math. Lett., 11, 131-133 (1998) · Zbl 0947.34501
[63] Wazwaz, A.-M., The modified decomposition method and Pade approximates for solving the Thomas-Fermi equation, Appl. Math. Comput., 105, 11-19 (1999) · Zbl 0956.65064
[64] Epele, L. N.; Fanchiotti, H.; Canal, C. A.G.; Ponciano, J. A., Pade approximate approach to the Thomas-Fermi problem, Phys. Rev. A, 60, 280-283 (1999)
[65] Mandelzweig, V. B.; Tabakinb, F., Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Comm., 141, 268-281 (2001) · Zbl 0991.65065
[66] Esposito, S., Majorana solution of the Thomas-Fermi equation, Amer. J. Phys., 70, 852-856 (2002)
[67] Kiessling, M. K.H., Symmetry results for finite-temperature, relativistic Thomas-Fermi equations, Commun. Math. Phys., 226, 607-626 (2002) · Zbl 0992.81026
[68] Liao, S., An explicit analytic solution to the Thomas-Fermi equation, Appl. Math. Comput., 144, 495-506 (2003) · Zbl 1034.34005
[69] He, J. H., Variational approach to the Thomas-Fermi equation, Appl. Math. Comput., 143, 533-535 (2003) · Zbl 1022.65083
[70] Ramos, J. I., Piecewise quasilinearization techniques for singular boundary-value problems, Comput. Phys. Comm., 158, 12-25 (2004) · Zbl 1196.65122
[71] Zaitsev, N. A.; Matyushkin, I. V.; Shamonov, D. V., Numerical solution of the Thomas-Fermi equation for the centrally symmetric atom, Russian Microelectron., 33, 303-309 (2004)
[72] Desaix, M.; Anderson, D.; Lisak, M., Variational approach to the Thomas-Fermi equation, European J. Phys., 25, 699-705 (2004)
[73] Khan, H.; Xu, H., Series solution to the Thomas-Fermi equation, Phys. Lett. A, 365, 111-115 (2007) · Zbl 1203.81060
[74] El-Nahhas, A., Analytic approximations for Thomas-Fermi equation, Acta Phys. Polon. A, 114, 4, 913-918 (2008)
[75] Iacono, R., An exact result for the Thomas-Fermi equation: a priori bounds for the potential slope at the origin, J. Phys. A, 41, Article 455204 pp. (2008), (7pp) · Zbl 1151.81417
[76] Yao, B., A series solution to the Thomas-Fermi equation, Appl. Math. Comput., 203, 396-401 (2008) · Zbl 1161.34303
[77] Kusano, T.; Maric, V.; Tanigawa, T., Regularly varying solutions of generalized Thomas-Fermi equations, Bull.: Cl. Sci. Math. Nat. Sci. Math., 139, 34, 43-73 (2009) · Zbl 1265.34034
[78] Parand, K.; Shahini, M., Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation, Phys. Lett. A, 373, 210-213 (2009) · Zbl 1227.49050
[79] Ebaid, A., A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math., 235, 1914-1924 (2011) · Zbl 1209.65077
[80] Marinca, V.; Herisanu, N., An optimal iteration method with application to the Thomas-Fermi equation, Cent. Eur. J. Phys., 9, 891-895 (2011)
[81] Oulne, M., Variation and series approach to the Thomas-Fermi equation, Appl. Math. Comput., 218, 303-307 (2011) · Zbl 1227.81264
[82] Abbasbandy, S.; Bervillier, C., Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Appl. Math. Comput., 218, 2178-2199 (2011) · Zbl 1234.34009
[83] Dong, J. P., Applications of density matrix in the fractional quantum mechanics: Thomas-Fermi model and Hohenberg-Kohn theorems revisited, Phys. Lett. A, 375, 2787-2792 (2011) · Zbl 1250.81140
[84] Caetano, C.; Reis, J. L.; Amorim, J.; Ruvlemes, M.; Dal Pino, A., Using neural networks to solve nonlinear differential equations in atomic and molecular physics, Int. J. Quantum Chem., 111, 2732-2740 (2011)
[85] Fernandez, F. M., Rational approximation to the Thomas-Fermi equations, Appl. Math. Comput., 217, 6433-6436 (2011) · Zbl 1210.81133
[86] Fewster-Young, N.; Tisdell, C. C., The existence of solutions to second-order singular boundary value problems, Nonlinear Anal., 75, 4798-4806 (2012) · Zbl 1275.34034
[87] Kusano, T.; Maric, V.; Tanigawa, T., An asymptotic analysis of positive solutions of generalized Thomas-Fermi differential equations - The sub-half-linear case, Nonlinear Anal., 75, 2474-2485 (2012) · Zbl 1248.34075
[88] Kusano, T.; Manojlovic, J., Positive solutions of fourth order Thomas-Fermi type differential equations in the framework of regular variation, Acta Appl. Math., 121, 81-103 (2012) · Zbl 1263.34042
[89] Zhu, S.; Zhu, H.; Wu, Q.; Khan, Y., An adaptive algorithm for the Thomas-Fermi equation, Numer. Algorithms, 59, 359-372 (2012) · Zbl 1236.65094
[90] Turkyilmazoglu, M., Solution of the Thomas-Fermi equation with a convergent approach, Commun. Nonlinear Sci. Numer. Simul., 17, 4097-4103 (2012) · Zbl 1316.34020
[91] Zhao, Y.; Lin, Z.; Liu, Z.; Liao, S., The improved homotopy analysis method for the Thomas-Fermi equation, Appl. Math. Comput., 218, 8363-8369 (2012) · Zbl 1245.65099
[92] Ourabah, K.; Tribeche, M., Relativistic formulation of the generalized nonextensive Thomas-Fermi model, Physica A, 393, 470-474 (2014) · Zbl 1395.82237
[93] Boyd, J. P., Rational Chebyshev series for the Thomas-Fermi function: Endpoint singularities and spectral methods, J. Comput. Appl. Math., 244, 90-101 (2013) · Zbl 1260.65065
[94] Parand, K.; Dehghanb, M.; Pirkhedri, A., The Sinc-collocation method for solving the Thomas-Fermi equation, J. Comput. Appl. Math., 237, 244-252 (2013) · Zbl 1253.65111
[95] Marinca, V.; Ene, R. D., Analytical approximate solutions to the Thomas-Fermi equation, Cent. Eur. J. Phys., 12, 7, 503-510 (2014)
[96] Jaros, J.; Kusano, T., Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66, 273-289 (2014) · Zbl 1314.34072
[97] Kusano, T.; Manojlovic, J. V.; Maric, V., Increasing solutions of Thomas-Fermi type differential equations - The superlinear case, Nonlinear Anal., 108, 114-127 (2014) · Zbl 1307.34074
[98] Kilicman, A.; Hashimb, I.; Tavassoli Kajani, M.; Maleki, M., On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math., 257, 79-85 (2014) · Zbl 1294.65080
[99] Jovanovic, R.; Kais, S.; Alharbi, F. H., Spectral method for solving the nonlinear Thomas-Fermi equation based on exponential functions, J. Appl. Math., 8 (2014), Article ID 168568 · Zbl 1437.65083
[100] Fatoorehchi, H.; Abolghasemi, H., An explicit analytic solution to the Thomas-Fermi equation by the improved differential transform method, Acta Phys. Polon. A, 125, 5, 1083-1087 (2014)
[101] Bayatbabolghani, F.; Parand, K., Using hermite function for solving Thomas-Fermi equation, Int. J. Math. Comput. Phys. Electron. Comput. Eng., 8, 1, 123-126 (2014)
[102] Amore, P.; Boyd, J. P.; Fernandez, F. M., Accurate calculation of the solutions to the Thomas-Fermi equations, Appl. Math. Comput., 232, 929-943 (2014) · Zbl 1410.81015
[103] Liu, C.; Zhu, S., Laguerre pseudospectral approximation to the Thomas-Fermi equation, J. Comput. Appl. Math., 282, 251-261 (2015) · Zbl 1316.34026
[104] Filobello-Nino, U.; Perez-Sesma, A.; Sanchez-Orea, J.; Hernandez-Mejia, C.; Vazquez-Leal, H.; Diaz-Sanchez, A.; Huerta-Chua, J.; Boubaker, K.; Sarmiento-Reyes, A.; Jimenez-Fernandez, V. M.; Morales-Mendoza, L. J.; Gonzalez-Martinez, F. J.; Cervantes-Perez, J.; Gonzalez-Lee, M., Nonlinearities distribution homotopy perturbation method applied to solve nonlinear problems: Thomas-Fermi equation as a case study, J. Appl. Math. (2015), Article ID 405108 · Zbl 1435.65115
[105] Dahmani, Z.; Anber, A., Two numerical methods for solving the fractional Thomas-Fermi equation, J. Interdiscip. Math., 18, 35-41 (2015)
[106] Feng, W.; Sun, S.; Sun, Y., Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms, Adv. Difference Equ., 2015, 350 (2015), (16pp) · Zbl 1422.34031
[107] Parand, K.; Khaleqi, S., The rational Chebyshev of second kind collocation method for solving a class of astrophysics problems, Eur. Phys. J. Plus, 131, 24 (2016)
[108] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62, 2364-2373 (2011) · Zbl 1231.65126
[109] Saadatmandi, A.; Dehghan, M., Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Methods Partial Differential Equations, 26, 1, 239-252 (2010) · Zbl 1186.65136
[110] Parand, K.; Taghavi, A.; Shahini, M., Comparison between rational Chebyshev and modified generalized Laguerre functions pseudospectral methods for solving Lane-Emden and unsteady gas equations, Acta Phys. Polon. B, 40, 12, 1749-1763 (2009)
[111] Parand, K.; Rezaei, A. R.; Taghavi, A., Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach: a comparison, Math. Methods Appl. Sci., 33, 17, 2076-2086 (2010) · Zbl 1204.65159
[112] Boyd, J. P., Chebyshev and Fourier Spectral Methods, 665 (2001), Dover: Dover Mineola, New York, Heavily revised and updated second edition of Boyd (1989) · Zbl 0994.65128
[113] Darani, M. A.; Nasiri, M., A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations, Comput. Methods Differential Equations, 1, 96-107 (2013) · Zbl 1309.65080
[115] Fox, L.; Parker, I. B., Chebyshev Polynomials in Numerical Analysis, Vol. 29 (1968), Oxford University Press: Oxford University Press London · Zbl 0153.17502
[116] Boyd, J. P., Large-degree asymptotics and exponential asymptotics for Fourier coefficients and transforms, Chebyshev and other spectral coefficients, J. Engrg. Math., 63, 355-399 (2009) · Zbl 1163.42001
[117] Elliott, D., The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function, Math. Comp., 18, 274-284 (1964) · Zbl 0119.32904
[118] Conte, S. D.; de Boor, C., Elementary Numerical Analysis (1981), McGraw-Hill International Editions
[119] Ralston, A.; Rabinowitz, P., A First Course in Numerical Analysis (1988), McGraw-Hill International Editions
[120] Kalaba, R., On Nonlinear Differential Equations, The Maximum Operation and Monotone Convergence (1957), RAND Corporation, P-1163
[121] Bellman, R. E.; Kalaba, R. E., Quasilinearization and Nonlinear Boundary-Value Problems (1965), Elsevier Publishing Company: Elsevier Publishing Company New York · Zbl 0139.10702
[122] Mandelzweig, V. B.; Tabakin, F., Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Comm., 141, 268-281 (2001) · Zbl 0991.65065
[123] Mandelzweig, V. B., Quasilinearization method and its verification on exactly solvable models in quantum mechanics, J. Math. Phys., 40, 6266-6291 (1999) · Zbl 0969.81007
[124] Liverts, E. Z.; Krivec, R.; Mandelzweig, V. B., Quasilinearization approach to the resonance calculations: The quartic oscillator, Phys. Scr., 77, 4, Article 045004 pp. (2008) · Zbl 1139.81339
[125] Parand, K.; Ghasemi, M.; Rezazadeh, S.; Peiravi, A.; Ghorbanpour, A.; Tavakoli Golpaygani, A., Quasilinearization approach for solving Volterra’s population model, Appl. Comput. Math., 9, 1, 95-103 (2010) · Zbl 1197.65229
[126] Krivec, R.; Mandelzweig, V. B., Fast convergent quasilinearization approach to quantum problems, AIP Conf. Proc., 768, 413-419 (2005) · Zbl 1136.81373
[127] Rezaei, A.; Baharifard, F.; Parand, K., Quasilinearization-Barycentric approach for numerical investigation of the boundary value Fin problem, Int. J. Comp. Electr. Auto. Cont. Info. Eng., 5, 2, 194-201 (2011)
[128] Boyd, J. P., The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys., 45, 43-79 (1982) · Zbl 0488.65035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.