×

A model incorporating combined RTIs and PIs therapy during early HIV-1 infection. (English) Zbl 1361.92039

Summary: We develop a within host mathematical model of HIV-1 infection describing the effects of combined RTIs and PIs treatments on early HIV-1 infection when treatment is captured using periodic functions of pharmacokinetics type. We use an alternative of the basic reproduction number to analyze endemicity level of HIV-1 infection. Various treatment scenarios incorporating perfect and imperfect drug adherence in drug administration are explored. Our results show that pharmacokinetics treatment is a more realistic way of administering the treatment. Apart from confirming that PIs drugs are more effective than RTIs drugs and that combined RTIs and PIs therapy is more effective than monotherapy of RTIs or PIs, our results show that imperfect drug adherence leads to the increase of viral in the absence of mutation even though the drug is good.

MSC:

92C50 Medical applications (general)
92C60 Medical epidemiology
Full Text: DOI

References:

[1] Hladik, F.; Sakchalathorn, P.; Ballweber, L.; Lentz, G.; Fialkow, M.; Eschenbach, D.; J McElrath, M., Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1, Immunity, 26, 2, 257-270 (2007)
[2] B van’t Wout, A.; A Kootstra, N.; A Mulder-Kampinga, G.; Albrecht-van Lent, N.; J Scherpbier, H.; Veenstra, J.; Boer, K.; A Coutinho, R.; Miedema, F.; Schuitemaker, H., Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission, J. Clin. Invest., 94, 5, 2060-2087 (1994)
[3] Sierra, S.; Kupfer, B.; Kaiser, R., Basics of virology of HIV-1 and its replication, J. Clin. Virol., 34, 4, 233-244 (2005)
[4] Rong, L.; Feng, Z.; S Perelson, A., Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol., 69, 6, 2027-2060 (2007) · Zbl 1298.92053
[5] Ding, A.; Wu, H., Assessing antiviral potency of anti-HIV therapies in vivo by comparing viral decay rates in viral dynamic models, Biostatistics, 2, 1, 13-29 (2001) · Zbl 1017.62110
[6] E Kirschner, D.; F Webb, G., A mathematical model of combined drug therapy of HIV infection, J. Theor. Med., 1, 25-34 (1997) · Zbl 0925.92073
[7] Labbé, L.; Verotta, D., A nonlinear mixed effect dynamic model incorporating prior exposure and adherence to treatment to describe long-term therapy outcome in HIV-patients, J. Pharmacokinet. Pharmacodyn., 33, 4, 519-542 (2006)
[8] Verrota, D., Models and estimation methods for clinical HIV-1 data, J. Comput. Appl. Math., 184, 1, 275-300 (2005) · Zbl 1072.92029
[9] Huang, Y.; Wu, H., A Bayesian approach for estimating antiviral efficacy in HIV dynamic model, J. Appl. Stat., 33, 2, 155-174 (2006) · Zbl 1106.62121
[10] Tarfulea, N.; Blink, A.; Nelson, E.; Turpin Jr., D., A CTL-inclusive mathematical model for antiretroviral treatment of HIV infection, Int. J. Biomath., 4, 1, 1-22 (2011) · Zbl 1403.92122
[11] K Srivastava, P.; Banerjee, M.; Chandra, P., Modeling the drug therapy for HIV infection, J. Biol. Syst., 17, 2, 213-223 (2009) · Zbl 1342.92103
[12] Rosenbloom, D. I.S.; Hill, A. L.; Rabi, S. A.; Siliciano, R. F.; Nowak, M. A., Antiretroviral dynamics determines hiv evolution and predicts therapy outcome, Nat. Med., 18, 9, 1378-1385 (2012)
[13] Chirove, F.; Sutimin; Soewono, E.; Nuraini, N., Analysis of combined langerhans and CD \(4{}^+\) t cells HIV infection, SIAM J. Appl. Math., 74, 4, 1174-1193 (2014) · Zbl 1366.37149
[14] Ju, R.; M Uetrecht, F., Mechanism of idiosyncratic drug reactions: reactive metabolites formation, protein binding and the regulation of the immune system, Curr. Drug Metab., 3, 4, 367-377 (2002)
[15] Pichler, W. J., The p-i concept: pharmacological interaction of drugs with immune receptors, World Allerge Organ., 1, 96-102 (2008)
[16] Weber, J., The pathogenesis of HIV-1 infection, Br. Med. Bull., 58, 1, 61-72 (2001)
[17] Diekmann, R.; A. P. Heesterbeek, J., Mathematical epidemiology of infectious diseases : model building, analysis and interpretation (2000), John Wiley and Sons, Chichester, UK · Zbl 0997.92505
[18] Bonhoeffer, S.; M May, R.; M Shaw, G.; A Nowak, M., Virus dynamics and drug therapy, Proc. Nat. Acad. Sci., USA, 94, 13, 6971-6976 (1997)
[19] M Dixit, N.; S Perelson, A., Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay, J. Theor. Biol., 226, 1, 95-109 (2004) · Zbl 1439.92108
[20] Tarfulea, N., A mathematical model for HIV treatment with time-varying antiretroviral therapy, Int. J. Comput. Math., 88, 15, 3217-3235 (2011) · Zbl 1237.92034
[21] P Acosta, E.; N Kakuda, T.; C Brundage, R.; L Anderson, P.; V Fletcher, C., Pharmacodynamics of human immunodeficiency virus type-1 protease inhibitors, Clin. Infect. Dis., 30, 2, 151-159 (2000)
[22] T Kamath, A.; Henri, S.; Battye, F.; F Tough, D.; Shortman, K., Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs, Blood, 100, 5, 1734-1741 (2002)
[23] A Stafford, M.; Corey, L.; Cao, Y.; S Daar, E.; D Ho, D.; S Perelson, A., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203, 3, 285-301 (2000)
[24] V Culshaw, R.; Ruan, S., A delay-differential equation model of HIV infection of CD \(4^+\) T-cells, Math. Biosci., 165, 27-39 (2000) · Zbl 0981.92009
[25] S Perelson, A.; W Nelson, P., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 1, 3-44 (1999) · Zbl 1078.92502
[26] S Perelson, A.; U Neumann, A.; Markowitz, M.; M Leonardand, J.; D. D. Ho, HIV-1 Dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 5255, 1582-1586 (1996)
[27] S Perelson, A.; E Kirschner, D.; D Boer, R., Dynamics of HIV infection of CD \(4{}^+\) T cells, Math. Biosci., 114, 1, 81-125 (1993) · Zbl 0796.92016
[28] M Adams, B.; T Banks, H.; Davidian, M.; Hee-Dae Kwon; T Tran, H.; N Wynne, S.; S Rosenberg, E., HIV Dynamics: modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184, 1, 10-49 (2005) · Zbl 1075.92030
[29] T Haase, A.; Henry, K.; Zupancic, M.; Sedgewick, G.; A Faust, R.; Melroe, H.; Cavert, W.; Gebhard, K.; Staskus, K.; Q Zhang, Z.; J Dailey, P.; H Balfour Jr, H.; Erice, A.; S Perelson, A., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274, 5289, 985-989 (1996)
[30] Kirschner, D., Using mathematics to understand HIV immune dynamics, AMS Notices, 43, 2, 191-202 (1996) · Zbl 1044.92503
[31] Wang, Z.; Liu, X., A chronic viral infection model with immune impairment, J. Theor. Biol., 249, 3, 532-542 (2007) · Zbl 1453.92327
[32] M Grant, R.; M Hecht, F.; Warmerdam, M.; Liu, L.; Liegler, T.; J Petropoulos, C.; S Hellmann, N.; Chesney, M.; P Busch, M.; O Kahn, J., Time trends in primary HIV-1 drug resistance among recently infected person, JAMA, 288, 2, 181-188 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.