×

Nonrelativistic anti-Snyder model and some applications. (English) Zbl 1361.81048

Summary: In this paper, we examine the \((2+1)\)-dimensional Dirac equation in a homogeneous magnetic field under the nonrelativistic anti-Snyder model which is relevant to doubly/deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigensolutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states nmax due to the orthogonality of the polynomials and the maximum energy is truncated at nmax. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti-Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit \(\beta\to 0\). By taking \(m\to 0\), we explore the motion of effective massless charged fermions in graphene-like material and obtained a maximum bound of deformed parameter \(\beta_{\text{max}}\). Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81V15 Weak interaction in quantum theory
81U30 Dispersion theory, dispersion relations arising in quantum theory
83C45 Quantization of the gravitational field
82D80 Statistical mechanics of nanostructures and nanoparticles

References:

[1] Snyder, H. S., Phys. Rev.71, 38 (1947). · Zbl 0035.13101
[2] Amati, D., Ciafaloni, M. and Veneziano, G., Phys. Lett. B197, 81 (1987).
[3] Gross, D. J. and Mende, P. F., Nucl. Phys. B303, 407 (1988).
[4] Garay, L. J., Int. J. Mod. Phys. A10, 145 (1995).
[5] Maggiore, M., Phys. Lett. B304, 65 (1993).
[6] Kempf, A., Mangano, G. and Mann, R. B., Phys. Rev. D52, 1108 (1995).
[7] Witten, E., Phys. Today49, 24 (1996).
[8] Hossenfelder, S., Living Rev. Rel.16, 2 (2013). · Zbl 1320.83004
[9] Sprenger, M., Nicolini, P. and Bleicher, M., Eur. J. Phys.33, 853 (2012). · Zbl 1271.83034
[10] Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. and Brukner, C., Nat. Phys.8, 393 (2012).
[11] Marin, F.et al., Nat. Phys.9, 71 (2012).
[12] Bawaj, M.et al., Nat. Commun.6, 7503 (2015).
[13] Gao, D. and Zhan, M., Phys. Rev. A94, 013607 (2016).
[14] Rossi, M. A. C., Giani, T. and Paris, M. G. A., Phys. Rev. D94, 024014 (2016).
[15] Mignemi, S., Phys. Rev. D84, 025021 (2011).
[16] Ali, A. F., Das, S. and Vagenas, E. C., Phys. Lett. B678, 497 (2009).
[17] Ali, A. F., Das, S. and Vagenas, E. C., Phys. Rev. D84, 044013 (2011).
[18] Ching, C. L., Parwani, R. and Singh, K., Phys. Rev. D86, 084053 (2012).
[19] Romero, J. M. and Zamora, A., Phys. Lett. B661, 11 (2008). · Zbl 1246.83082
[20] Ashtekar, A. and Lewandowski, J., Class. Quantum Grav.21, R53 (2004). · Zbl 1077.83017
[21] Mignemi, S., Phys. Lett. B672, 186 (2009).
[22] Magueijo, J. and Smolin, L., Phys. Rev. Lett.88, 190403 (2002).
[23] Amelino-Camelia, G., Phys. Lett. B510, 255 (2001). · Zbl 1062.83540
[24] Romero, J. M. and Zamora, A., Phys. Rev. D70, 105006 (2004).
[25] Guo, H. Y., Huang, C. G., Tian, Y., Wu, H. T., Xu, Z. and Zhou, B., Class. Quantum Grav.24, 4009 (2007). · Zbl 1158.83006
[26] Battisti, M. V., Phys. Rev. D79, 083506 (2009).
[27] Carrisi, M. C. and Mignemi, S., Phys. Rev. D82, 105031 (2010).
[28] Banerjee, R., Kumar, K. and Roychowdhury, D., J. High Energy Phys.03, 060 (2011). · Zbl 1301.81269
[29] Abdalla, M. C. B., Holender, L., Santos, M. A. and Vancea, I. V., Phys. Rev. D86, 045019 (2012).
[30] Pramanik, S., Ghosh, S. and Pal, P., Phys. Rev. D90, 105027 (2014).
[31] Livine, E. R. and Oriti, D., J. High Energy Phys.06, 050 (2004).
[32] Menculini, L., Panella, O. and Roy, P., Phys. Rev. D87, 065017 (2013).
[33] Maggiore, M., Phys. Lett. B319, 83 (1993).
[34] Das, S., Vagenas, E. C. and Ali, A. F., Phys. Lett. B690, 407 (2010).
[35] Pedram, P., Phys. Lett. B702, 295 (2011).
[36] Jizba, P., Kleinert, H. and Scardigli, F., Phys. Lett. B452, 39 (1999).
[37] Jizba, P., Kleinert, H. and Scardigli, F., Phys. Rev. D81, 084030 (2010).
[38] Pedram, P., Phys. Lett. B714, 317 (2012).
[39] Ching, C. L. and Parwani, R. R., Mod. Phys. Lett. A28, 1350061 (2013).
[40] Ching, C. L. and Ng, W. K., Phys. Rev. D88, 084009 (2013).
[41] Ching, C. L. and Ng, W. K., Mod. Phys. Lett. A29, 1450080 (2014). · Zbl 1291.81196
[42] Akhiezer, N. I. and Glazman, I. M., Theory of Linear Operators in Hilbert Space (Dover, New York, 1993). · Zbl 0874.47001
[43] Bonneau, G., Faraut, J. and Valent, G., Am. J. Phys.69, 322 (2001).
[44] Araujo, V. S., Coutinho, F. A. B. and Perez, J. F., Am. J. Phys.72, 203 (2004). · Zbl 1219.81123
[45] Pedram, P., Phys. Rev. D85, 024016 (2012).
[46] Balasubramanian, V., Das, S. and Vagenas, E. C., Ann. Phys.360, 1 (2015). · Zbl 1360.81156
[47] Menculini, L., Panella, O. and Roy, P., Phys. Rev. D91, 045032 (2015).
[48] Presilla, M., Panella, O. and Roy, P., Phys. Rev. D92, 045019 (2015).
[49] Bloch, I., Dalibard, J. and Nascimbne, S., Nat. Phys.8, 267 (2012).
[50] Stormer, H. L., Tsui, D. C. and Gossard, A. C., Rev. Mod. Phys.71, S298 (1999).
[51] Hasan, M. Z. and Kane, C. L., Rev. Mod. Phys.82, 3045 (2010).
[52] Rabi, I. I., Z. Phys.49, 507 (1928). · JFM 54.0975.01
[53] Znojil, M., Eight exactly solvable complex potentials in Bender-Boettcher quantum mechanics (English), in Proc. 20th Winter School “Geometry and Physics”, eds. Slovák, J. and Čadek, M. (Circolo Matematico di Palermo, Palermo, 2001), pp. 213-218. · Zbl 0977.81011
[54] Bender, C. M., Rep. Prog. Phys.70, 947 (2007).
[55] Mostafazadeh, A., J. Math. Phys.43, 205 (2002). · Zbl 1059.81070
[56] Mostafazadeh, A., J. Math. Phys.43, 2814 (2002). · Zbl 1060.81022
[57] Bagchi, B. and Quesne, C., Phys. Lett. A273, 285 (2000). · Zbl 1050.81546
[58] Gangopadhyaya, A., Mallow, J. V. and Rasinariu, C., Supersymmetric Quantum Mechanics: An Introduction (World Scientific, Singapore, 2010). · Zbl 1375.81007
[59] Bagchi, B. and Roychoudhury, R., J. Phys. A: Math. Gen.33, L1 (2000). · Zbl 0967.81016
[60] Alvarez-Castillo, D. E. and Kirchbach, M., Rev. Mex. Fis. E53, 143 (2007).
[61] Romanovski, V. I., C. R. Acad. Sci. Paris188, 1023 (1929). · JFM 55.0915.03
[62] D. E. Alvarez-Castillo, arXiv:0808.1642.
[63] Jiang, Z., Henriksen, E. A., Tung, L. C., Wang, Y.-J., Schwartz, M. E., Han, M. Y., Kim, P. and Stormer, H. L., Phys. Rev. Lett.98, 197403 (2007).
[64] Das, S. and Vagenas, E. C., Phys. Rev. Lett.101, 221301 (2008).
[65] Z. W. Feng, S. Z. Yang, H. L. Li and X. T. Zu, arXiv:1610.08549v2.
[66] Wang, B. Q., Long, C. Y., Long, Z. W. and Xu, T., Eur. Phys. J. Plus131, 378 (2016).
[67] Brau, F. and Buisseret, F., Phys. Rev. D74, 036002 (2006).
[68] Padmanabhan, T., Gravitation: Foundations and Frontiers (Cambridge University Press, 2010). · Zbl 1187.83002
[69] Petit, J. P., Mod. Phys. Lett. A3, 1527 (1988).
[70] Moffat, J., Int. J. Mod. Phys. D2, 351 (1993). · Zbl 0942.83523
[71] Magueijo, J., Rep. Prog. Phys.66, 2025 (2003).
[72] Amelino-Camelia, G., Int. J. Mod. Phys. D11, 35 (2002). · Zbl 1062.83500
[73] de Rham, C., Living Rev. Rel.17, 7 (2014). · Zbl 1320.83018
[74] Sprenger, M., Nicolini, P. and Bleicher, M., Class. Quantum Grav.28, 235019 (2011). · Zbl 1231.83016
[75] Gonzalez-Garcia, M. C. and Nir, Y., Rev. Mod. Phys.75, 345 (2002).
[76] (Nakamura, K.et al.), J. Phys. G, Nucl. Part. Phys.37, 075021 (2010).
[77] Kayser, B., eConfC040802, L004 (2004).
[78] Kayser, B., Proc. Int. School on AstroParticle Physics, eds. Bellini, G. and Ludhova, L. (IOS Press, Amsterdam, 2012), p. 1.
[79] Nikiforov, A. F. and Uvarov, V. B., Special Functions of Mathematical Physics (Birkhäuser Verlag, Basel, 1988). · Zbl 0624.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.