×

Tractable embeddings of Besov spaces into small Lebesgue spaces. (English) Zbl 1361.46026

If \(1\leq p<n\), then \[ \Big( \int^1_0 (1 - \log t)^{p/2} f^* (t)^p \, dt \Big)^{1/p} \leq c \big( \| f \, | L^p \| + \| \nabla f\, | L^p \| \big), \] \(f \in W^{1,p}(\mathbb R^n)\), \(\text{supp }f \subset [0,1]^n\), where \(c>0\) is independent of the dimension \(n\). Here, \(f^*\) is the usual decreasing rearrangement of \(f\). There are counterparts with Besov spaces \(B^s_{p,q}\) in place of the Sobolev spaces \(W^{1,p}\). The main point is the control of the related constants \(c\) on the dimension \(n\). Assertions of this type are called tractable (or dimension-controllable). The paper contributes to this topic replacing the left-hand side of the above inequality by the so-called small Lebesgue spaces, normed by \[ \| f \, | L^{(p,b,q} (\mathbb T^n) \| = \Big( \int^1_0 \Big[ (1- \log t)^b \Big( \int^t_0 f^* (s)^p \, ds \Big)^{1/p} \Big]^q \frac{dt}{t} \Big)^{1/q}\,, \] where \(\mathbb T^n = [0,1]^n\) is the \(n\)-torus. The arguments are based on periodic Besov spaces and related approximations, (limiting) interpolations and extrapolations.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42A10 Trigonometric approximation
46B70 Interpolation between normed linear spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] C.Bennett, Intermediate spaces and the class \(L \log^+ L\), Ark. Mat.11, 215-228 (1973). · Zbl 0266.46025
[2] C.Bennett and K.Rudnick, On Lorentz‐Zygmund spaces, Dissertationes Math.175, 1-72 (1980). · Zbl 0456.46028
[3] C.Bennett and R.Sharpley, Interpolation of Operators (Academic Press, Boston, 1988). · Zbl 0647.46057
[4] J.Bergh and J.Löfström, Interpolation Spaces. An Introduction (Springer, Berlin, 1976). · Zbl 0344.46071
[5] F.Cobos and O.Domínguez, Embeddings of Besov spaces of logarithmic smoothness, Studia Math.223, 193-204 (2014). · Zbl 1325.46039
[6] F.Cobos and O.Domínguez, Approximation spaces limiting interpolation and Besov spaces, J. Approx. Theory189, 43-66 (2015). · Zbl 1326.46020
[7] F.Cobos and O.Domínguez, On Besov spaces of logarithmic smoothness and Lipschitz spaces, J. Math. Anal. Appl.425, 71-84 (2015). · Zbl 1320.46028
[8] F.Cobos, L. M.Fernández‐Cabrera, T.Kühn, and T.Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal.56, 2321-2366 (2009). · Zbl 1211.46020
[9] F.Cobos and T.Kühn, Equivalence of K‐ and J‐methods for limiting real interpolation spaces, J. Funct. Anal.261, 3696-3722 (2011). · Zbl 1251.46008
[10] F.Cobos and M.Milman, On a limit class of approximation spaces, Numer. Funct. Anal. Optim.11, 11-31 (1990). · Zbl 0729.41033
[11] F.Cobos and A.Segurado, Description of logarithmic interpolation spaces by means of the J‐functional and applications, J. Funct. Anal.268, 2906-2945 (2015). · Zbl 1335.46018
[12] R. A.DeVore and G. G.Lorentz, Constructive Approximation (Springer, Berlin, 1993). · Zbl 0797.41016
[13] R. A.DeVore, S. D.Riemenschneider, and R. C.Sharpley, Weak interpolation in Banach spaces, J. Funct. Anal.33, 58-94 (1979). · Zbl 0433.46062
[14] G. DiFratta and A.Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces, Nonlinear Anal.70, 2582-2592 (2009). · Zbl 1184.46032
[15] D. E.Edmunds and W. D.Evans, Hardy Operators, Function Spaces and Embeddings (Springer, Berlin, 2004). · Zbl 1099.46002
[16] F.Fehér and G.Grässler, On an extremal scale of approximation spaces, J. Comput. Anal. Appl.3, 95-108 (2001). · Zbl 1033.46021
[17] A.Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math.51, 131-148 (2000). · Zbl 0960.46022
[18] A.Fiorenza and G. E.Karadzhov, Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwend.23, 657-681 (2004). · Zbl 1071.46023
[19] A.Fiorenza, M.Krbec, and H.‐J.Schmeisser, An improvement of dimension‐free Sobolev imbeddings in r.i. spaces, J. Funct. Anal.267, 243-261 (2014). · Zbl 1312.46043
[20] M. E.Gomez and M.Milman, Extrapolation spaces and almost‐everywhere convergence of singular integrals, J. London Math. Soc.34, 305-316 (1986). · Zbl 0644.42014
[21] D. D.Haroske and S. D.Moura, Continuity envelopes of spaces of generalized smoothness, entropy and approximation numbers, J. Approx. Theory128, 151-174 (2004). · Zbl 1055.46020
[22] T.Iwaniec and C.Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal.119, 129-143 (1992). · Zbl 0766.46016
[23] B.Jawerth and M.Milman, Extrapolation Theory with Applications, Memoirs of the American Mathematical Society440 (1991). · Zbl 0733.46040
[24] G. E.Karadzhov and M.Milman, Extrapolation theory: new results and applications, J. Approx. Theory133, 38-99 (2005). · Zbl 1081.46018
[25] V. I.Kolyada and A. K.Lerner, On limiting embeddings of Besov spaces, Studia Math.171, 1-13 (2005). · Zbl 1090.46026
[26] M.Krbec and H.‐J.Schmeisser, On dimension‐free Sobolev imbeddings I, J. Math. Anal. Appl.387, 114-125 (2012). · Zbl 1238.46027
[27] M.Krbec and H.‐J.Schmeisser, On dimension‐free Sobolev imbeddings II, Rev. Mat. Complut.25, 247-265 (2012). · Zbl 1280.46023
[28] J.Martín and M.Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, Adv. Math.225, 121-199 (2010). · Zbl 1216.46026
[29] M.Milman, Extrapolation and Optimal Decompositions with Applications to Analysis, Lecture Notes in Mathematics Vol. 1580 (Springer, Berlin, 1994). · Zbl 0852.46059
[30] S. M.Nikolski, Approximation of Functions of Several Variables and Imbedding Theorems (Springer, Berlin, 1975). · Zbl 0307.46024
[31] E.Novak and H.Woźniakowski, Tractability of Multivariate Problems, Volume I: Linear Information, EMS Tracts in Mathematics Vol. 6 (European Math. Soc., Zürich, 2009).
[32] E.Novak and H.Woźniakowski, Tractability of Multivariate Problems, Volume II: Standard Information for Functionals, EMS Tracts in Mathematics Vol. 12 (European Math. Soc., Zürich, 2010). · Zbl 1241.65025
[33] P. P.Petrushev and V. A.Popov, Rational Approximation of Real Functions Enciclopedia of Mathematics and Its Applications Vol. 28 (Cambridge Univ. Press, Cambridge, 1987). · Zbl 0644.41010
[34] A.Pietsch, Approximation spaces, J. Approx. Theory32, 115-134 (1981). · Zbl 0489.47008
[35] H.‐J.Schmeisser and H.Triebel, Topics in Fourier Analysis and Function Spaces (Wiley, Chichester, 1987). · Zbl 0661.46024
[36] V. N.Temlyakov, Approximation of Periodic Functions (Nova Science, New York, 1994). · Zbl 0899.41001
[37] H.Triebel, Interpolation Theory, Function Spaces, Differential Operators (North‐Holland, Amsterdam, 1978). · Zbl 0387.46033
[38] H.Triebel, Tractable embeddings of Besov spaces into Zygmund spaces, in: Proc. Function Spaces IX, Banach Center Publ. Vol. 92 (Warszawa, 2011), pp. 361-377. · Zbl 1239.46033
[39] H.Triebel, Tractable embeddings of Besov spaces into Zygmund spaces, II, in: Proc. Function Spaces X, Banach Center Publ. Vol. 102 (Warszawa, 2014), pp. 229-235. · Zbl 1323.46029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.