×

Existence of periodic solutions of a continuous flow bioreactor model with impulsive control in microorganisms. (English) Zbl 1361.34050

Summary: In this paper, we aim to investigate the dynamics and existence of periodic solutions of a state-dependent impulsive model for continuous flow bioreactors. In this model, the Monod’s growth rate is employed and an impulsive control strategy is used to control the quantity of microorganisms. Our study shows all solutions of the model are bounded; and the order-1 periodic solution exists under certain conditions. At the end of this paper, numerical simulations have been carried out to demonstrate our theoretical results and the performance of the bioreactor.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
92D25 Population dynamics (general)
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] Monod, J.: La technique de culture continue: Thorie et applications. Ann. l’Inst. Pasteur 79(4), 390-410 (1950)
[2] Smith, H., Waltman, P.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1994) · Zbl 0831.92028
[3] Nelson, M., Balakrishnan, E., Sidhu, H.: A fundamental analysis of continuous flow bioreactor and membrane reactor models with tessier kinetics. Chem. Eng. Commun. 199(3), 417-433 (2012) · doi:10.1080/00986445.2010.525155
[4] Schulze, K., Lipe, R.: Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture. Arch. Microbiol. 48(1), 1-20 (1964)
[5] Sonmezisik, M., Tanyolac, D., Seker, S., Tanyolac, A.: The double-substrate growth kinetics of sulfolobus solfataricus, a thermophilic sulfur-removing archeabacterium. Biochem. Eng. J. 1(3), 243-248 (1998) · doi:10.1016/S1369-703X(98)00008-4
[6] Zhang, T.: Global analysis of continuous flow bioreactor and membrane reactor models with death and maintenance. J. Math. Chem. 50(8), 2239-2247 (2012) · Zbl 1306.92015 · doi:10.1007/s10910-012-0027-5
[7] Nelson, M., Kerr, T., Chen, X.: A fundamental analysis of continuous flow bioreactor and membrane reactor models with death and maintenance included. J. Chem. Eng. 3(1), 70-80 (2008)
[8] Wolkowicz, G., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52(1), 1-12 (1992) · Zbl 0739.92025 · doi:10.1137/0152012
[9] Pirt, S.: The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. Ser-B 163, 224-231 (1965) · doi:10.1098/rspb.1965.0069
[10] Liu, X.: Stability results for impulsive diffrential systems with applications to population growth models. Dyn. Stabil. Syst. 9(2), 163-174 (1994) · Zbl 0808.34056
[11] Liu, X., Chen, L.: Complex dynamics of holling type II Lotka-Volterra predatorprey system with impulsive perturbations on the predator. Chaos Solitons Fract. 16(2), 311-320 (2003) · Zbl 1085.34529 · doi:10.1016/S0960-0779(02)00408-3
[12] Angelova, J., Dishliev, A.: Optimization problems for one-impulsive models from population dynamics. Nonlinear Anal. TMA 39(4), 483-497 (2000) · Zbl 0942.34010 · doi:10.1016/S0362-546X(98)00216-8
[13] Liu, X., Chen, L.: Global dynamics of the periodic logistic system with periodic impulsive perturbations. J. Math. Anal. Appl. 289(1), 279-291 (2004) · Zbl 1054.34015 · doi:10.1016/j.jmaa.2003.09.058
[14] Tang, S., Chen, L.: Impulsive semi-dynamical systems with applications in biological management (the doctor degree’s article). Chinese Academy of Science (2003)
[15] Wang, T., Chen, L.: Global analysis of a three-dimensional delayed Michaelic-Menten chemostat-type models with pulsed input. J. Appl. Math. Comput. 35(1-2), 211-227 (2011) · Zbl 1216.34085 · doi:10.1007/s12190-009-0352-4
[16] Guo, H., Chen, L.: Qualitative analysis of a variable yield turbidostat model with impulsive state feedback control. J. Appl. Math. Comput. 33(1-2), 193-208 (2010) · Zbl 1214.34038 · doi:10.1007/s12190-009-0281-2
[17] Zhang, T., Meng, X., Song, Y., Zhang, T.: A stage-structured predator-prey SI model with disease in the prey and impulsive effects. Math. Model. Anal. 18(4), 505-528 (2013) · Zbl 1285.34073 · doi:10.3846/13926292.2013.840866
[18] Zhang, T., Meng, X., Liu, R., Zhang, T.: Periodic solution of a pest management Gompertz model with impulsive state feedback control. Nonlinear Dyn. 78(2), 921-938 (2014) · Zbl 1331.92155 · doi:10.1007/s11071-014-1486-y
[19] Chen, L.: Pest control and geometric theory of semi-continuous dynamical system. J. Beihua Univ. 12, 1-9 (2011)
[20] Zeng, G., Chen, L., Sun, L.: Existence of periodic solution of order one of planar impulsive autonomous system. J. Comput. Appl. Math. 186(2), 466-481 (2006) · Zbl 1088.34040 · doi:10.1016/j.cam.2005.03.003
[21] Nelson, M.I., Balakrishnan, E., Sidhu, H., Chen, X.: A fundamental analysis of continuous flow bioreactor models and membrane reactor models to process industrial wastewaters. Chem. Eng. J. 140, 521-528 (2008) · doi:10.1016/j.cej.2007.11.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.